タグ「定数」の検索結果

123ページ目:全1257問中1221問~1230問を表示)
北海道医療大学 私立 北海道医療大学 2010年 第3問
関数$f(x)=x^2-1$と$g(x)=2a-f(x)$がある.ただし,$a$は定数とする.

(1)方程式$f(x)-g(x)=0$が異なる$2$つの実数解を持ち,かつ,それらが$-1$より大きいとき,$a$の値の範囲を求めよ.また,このとき,方程式$f(x)-g(x)=0$の解を求めよ.
(2)$a$が$(1)$で求めた範囲にあるとし,座標平面上に$y=f(x)$のグラフと$y=g(x)$のグラフがあるとする.

\mon[$(2$-$1)$] $y=f(x)$のグラフと$y=g(x)$のグラフとで囲まれる部分の面積$S_1$を$a$を用いて表せ.
\mon[$(2$-$2)$] $y=f(x)$のグラフと$y=g(x)$のグラフの共有点のうち,$x$座標が負である共有点を$\mathrm{P}$とする.このとき,直線$x=-1$,$\mathrm{P}$を通り$y$軸に平行な直線,$y=f(x)$のグラフ,および,$y=g(x)$のグラフとで囲まれる部分の面積$S_2$を$a$を用いて表せ.
\mon[$(2$-$3)$] 面積の和$S=S_1+S_2$を$a$を用いて表せ.
\mon[$(2$-$4)$] $(1)$で求めた範囲内で$a$を変化させたとき,$S$の最小値とその最小値を与える$a$の値を求めよ.
北海道医療大学 私立 北海道医療大学 2010年 第3問
$2$次不等式$x^2-11x+28<0$を満たす実数$x$の集合を$A$,$x^2-(a+2)x+2a<0$を満たす実数$x$の集合を$B$とする.ここで,$a$は定数で,$a>2$とする.また,$\phi$を空集合,実数全体の集合$U$を全体集合とし,$A,\ B$の補集合を$\overline{A},\ \overline{B}$とする.以下の問に答えよ.

(1)次の不等式を解け.

\mon[$①$] $x^2-11x+28<0$
\mon[$②$] $x^2-(a+2)x+2a<0$

(2)$A \cap B=\phi$となるような$a$の値の範囲を求めよ.
(3)$A \cap B$が整数を$1$つだけ含むように$a$の値の範囲を定めよ.
(4)$\overline{A} \supset \overline{B}$となるような$a$の値の範囲を求めよ.
(5)$\overline{B} \supset A$となるような$a$の値の範囲を求めよ.
(6)$2$次不等式$3x^2-9x+2>0$を満たす実数$x$の集合を$C$とし,その補集合を$\overline{C}$とする.

\mon[$(6$-$1)$] $B \cap C=\phi$となるような$a$の値の範囲を求めよ.
\mon[$(6$-$2)$] $\overline{C}$の要素で,整数であるものをすべて求めよ.
関西大学 私立 関西大学 2010年 第3問
$a$は正の定数で,$a>1$とする.次の問いに答えよ.

(1)不等式
\[ \left\{ \begin{array}{l}
y \geqq x-a \\
y \leqq x(a-x)
\end{array} \right. \]
を満たす領域$D$を図示せよ.
(2)$(1)$で定まる領域$D$内の点$(x,\ y)$について,$x+y$の最大値と最小値を求めよ.
関西大学 私立 関西大学 2010年 第1問
関数$f(x)=\log (\sin x+2) (0<x<2\pi)$について,次の問いに答えよ.

(1)$f(x)$の第$1$次導関数$f^\prime(x)$と第$2$次導関数$f^{\prime\prime}(x)$を求めよ.
(2)$f(x)$の極値を求めよ.
(3)$f(x)$の変曲点を求め,$y=f(x)$のグラフの概形を座標平面上にかけ.
(4)$k$を実数の定数とするとき,$0<x<2\pi$における$\log (\sin x+2)-k=0$の解の個数を調べよ.
関西大学 私立 関西大学 2010年 第3問
$x$の関数$y=|e^{-x|-a}$に対して,次の問いに答えよ.ここで$a$は$-\infty<a<\infty$の範囲の定数とする.

(1)$e^{-1}<a<1$であるとき,$x$の関数$y=|e^{-x|-a}$のグラフの概形を座標平面上にかけ.
(2)$\displaystyle f(a)=\int_0^1 |e^{-x|-a} \, dx$とおく.$-\infty<a<\infty$であるとき,$f(a)$を$a$を用いて表せ.
(3)$a$が$-\infty<a<\infty$であるとき,$f(a)$の最小値を求めよ.
中央大学 私立 中央大学 2010年 第1問
次の問いの答を記入せよ.

(1)$|\overrightarrow{a}|=3$,$|\overrightarrow{b}|=4$,$|\overrightarrow{a}+\overrightarrow{b}|=6$のとき,$|\overrightarrow{a}-\overrightarrow{b}|$の値を求めよ.
(2)定義域が$0 \leqq x \leqq 3$である$2$次関数$y=-ax^2+2ax+b$の最大値が$3$で,最小値が$-5$であるとき,定数$a,\ b$の値を求めよ.ただし$a>0$とする.
(3)$\displaystyle \cos \theta=-\frac{\sqrt{3}}{2}$を満たす角$\theta$を求めよ.ただし,$0^\circ \leqq \theta \leqq {180}^\circ$とする.
(4)$3$つの数$x-2,\ x+1,\ x+7$がこの順で等比数列となるとき,$x$の値を求めよ.
(5)白玉$3$個,赤玉$2$個が入っている袋から玉を$1$個取り出し色を確認してからもとに戻す.この操作を$3$回続けて行う.$1$回目に白,$2$回目に赤,$3$回目に赤の玉が取り出される確率を求めよ.ただし,どの玉も取り出される確率は等しいとする.
(6)関数$y=x^3-12x$の区間$-1 \leqq x \leqq 3$における最大値と最小値を求めよ.
(7)次の条件を満たす関数$f(x)$を求めよ.
\[ \left\{ \begin{array}{l}
f^\prime(x)=6x^2-2x+3 \\
f(1)=7
\end{array} \right. \]
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2010年 第4問
$k$を実数の定数とするとき,下記の問いに答えなさい.

(1)$f(x)=2x^3+x^2-5x+3$,$g(x)=x^4+x^2-(k+1)x+k$とおく.$k$の値が変化するとき,曲線$y=f(x)$と$y=g(x)$の共有点の個数を調べなさい.
(2)$x$についての方程式$\displaystyle 6 \tan x+\cos x-k \sin x=0 \left( 0<x<\frac{\pi}{2} \right)$を考える.$k$の値が変化するとき,実数解の個数が$2$個であるのは$[$1$]$のときである.また実数解の個数が$1$個であるのは$[$2$]$のときであり,実数解が存在しないのは$[$3$]$のときである.
$[$1$]$,$[$2$]$,$[$3$]$に該当する$k$の条件を答えなさい.
東京女子大学 私立 東京女子大学 2010年 第7問
$2$つの曲線$y=e^x$と$y=a \sqrt{x}$の共有点が$1$個であるとき,次の問いに答えよ.

(1)定数$a$と共有点の座標を求めよ.
(2)この$2$つの曲線と$y$軸で囲まれた部分の面積を求めよ.
早稲田大学 私立 早稲田大学 2010年 第4問
$k$は実数の定数とする.実数$x,\ y$に対して,次の条件$\mathrm{P}$,$\mathrm{Q}$を考える.\\
\quad $\mathrm{P}:x \geqq 0$\quad かつ \quad $y \geqq 0$\\
\quad $\mathrm{Q}:-kx+y \geqq 0$\quad かつ \quad $14x-(k-5)y \geqq 0$\\
このとき,$\mathrm{P}$が$\mathrm{Q}$の十分条件となるための$k$の範囲は,$k \leqq [コ]$である.また,$\mathrm{P}$が$\mathrm{Q}$の必要条件となるための$k$の範囲は$[サ] \leqq k \leqq [シ]$である.
早稲田大学 私立 早稲田大学 2010年 第5問
四面体$\mathrm{OABC}$において,線分$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:1$に内分する点を$\mathrm{Q}$,線分$\mathrm{BC}$を$4:1$に内分する点を$\mathrm{R}$とする.この四面体を$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面で切り,この平面が線分$\mathrm{AC}$と交わる点を$\mathrm{S}$とするとき,線分の長さの比$\mathrm{AS}:\mathrm{SC}$を求めることを考えよう.\\
点$\mathrm{S}$は$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面上にあるから,定数$s,\ t,\ u$を用いて,
\[ \overrightarrow{\mathrm{OS}} = s \, \overrightarrow{\mathrm{OP}} + t \, \overrightarrow{\mathrm{OQ}} +u \, \overrightarrow{\mathrm{OR}} \quad (s+t+u=1) \]
と書くことができる.ここで,$\displaystyle \overrightarrow{\mathrm{OR}}=\frac{[ス]\overrightarrow{\mathrm{OB}}+[セ]\overrightarrow{\mathrm{OC}}}{[ソ]}$であるから,$\overrightarrow{\mathrm{OS}}$は$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$それぞれの定数倍の和として表すことができる.そこで,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$の係数をそれぞれ定数$s^{\prime},\ t^{\prime},\ u^{\prime}$とおくことにより
\[ \overrightarrow{\mathrm{OS}} = s^{\prime}\overrightarrow{\mathrm{OA}} + t^{\prime}\overrightarrow{\mathrm{OB}} +u^{\prime}\overrightarrow{\mathrm{OC}} \quad (18s^{\prime}+16t^{\prime}+11u^{\prime}=[タ]) \]
と書くことができる.ところが,点$\mathrm{S}$は線分$\mathrm{AC}$上にあることから,$s^{\prime},\ t^{\prime}\ u^{\prime}$を求めることができ,$\mathrm{AS}:\mathrm{SC}=[チ]:[ツ]$であることがわかる.
ただし,$[ソ]$,$[チ]$,$[ツ]$はできる限り小さい自然数で答えること.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。