タグ「定数」の検索結果

121ページ目:全1257問中1201問~1210問を表示)
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$のとき,関数$y=\cos 2\theta-2 \sin \theta$の最大値とそのときの$\theta$の値を求めると$(y,\ \theta)=[ア]$であり,最小値とそのときの$\theta$の値を求めると$(y,\ \theta)=[イ]$である.
(2)実数$a,\ b$を係数とする方程式$x^3+ax^2+bx-4=0$の解の$1$つが$1-i$であるとき,残りの解のうち実数解を求めると$x=[ウ]$であり,$a,\ b$の値を求めると$(a,\ b)=[エ]$である.ただし,$i$は虚数単位である.
(3)$x$についての方程式$9^x-a \cdot 3^x+a^2-a=0$が$2$つの異なる実数解をもつとき,定数$a$のとりうる値の範囲は$[オ]$である.また,$x \geqq \sqrt{2}$,$y \geqq 1$,$x^2y=4$のとき,$(1+\log_2x)(\log_2y)$が最大値をとる$x,\ y$の値を求めると,$(x,\ y)=[カ]$である.
(4)座標平面上に中心が原点$\mathrm{O}$で半径が$3$の円$C$と,傾きが負で点$\mathrm{A}(5,\ 0)$を通る直線$\ell$を考える.$C$と$\ell$は$2$点$\mathrm{P}$,$\mathrm{Q}$($\mathrm{AP}<\mathrm{AQ}$)で交わるとする.$\angle \mathrm{POQ}$を$\theta$とするとき,$\triangle \mathrm{PQO}$の面積$S_1$を$\theta$を用いて表すと$S_1=[キ]$である.また,点$\mathrm{B}$の座標を$(-3,\ 0)$とするとき,$\triangle \mathrm{PQB}$の面積$S_2$の最大値は$[ク]$である.
西南学院大学 私立 西南学院大学 2010年 第4問
$3$次関数$f(x)=x^3-9px^2+15p^2x-q$について,次の問に答えよ.

(1)$p=1$,$q=0$のとき,$x=[ナ]$で極小値$[ニヌネ]$をとり,$x=[ノ]$で極大値$[ハ]$をとる.
(2)$p$を正の定数とする.$f(x)=0$が$3$つの異なる実数解を持つときの$q$の範囲は,$[ヒフヘ]p^3<q<[ホ]p^3$である.
西南学院大学 私立 西南学院大学 2010年 第5問
曲線$C:y=x |x-1|$と,直線$\ell:y=kx$に関して,次の問に答えよ.ただし,$k$は実数の定数とする.

(1)曲線$C$の概形を描け.
(2)曲線$C$と直線$\ell$が$x>0$で$2$つの交点を持つような$k$の範囲を求めよ.
(3)$k$が$(2)$で求めた範囲を動くとき,$C$と$\ell$によって囲まれる図形全体の面積を最小にする$k$の値を求めよ.
西南学院大学 私立 西南学院大学 2010年 第1問
次の問いに答えよ.

(1)$p$を実数の定数とする.$x$に関する次の$2$つの方程式
\[ \begin{array}{l}
x^2+px+3p+9=0 \\
x^2-7x-p^2-7p-12=0
\end{array} \]
が$1$つ以上の共通解をもつとき,その共通解は,$\displaystyle \frac{[ア] \pm \sqrt{[イウ]}}{2}$あるいは,$[エ]$である.
(2)$a,\ b$を正の定数(ただし,$a>b$)とし,$ab=7$とする.方程式$\displaystyle \frac{b}{2x-a}-\frac{a}{2x-b}=0$の解が$x=3$ならば,$a=[オ]+\sqrt{[カ]}$,$b=[キ]-\sqrt{[ク]}$である.
西南学院大学 私立 西南学院大学 2010年 第4問
$2$つの数列$\{a_n\}$,$\{b_n\}$は,
\[ a_{n+1}=-a_n-15b_n,\quad b_{n+1}=a_n+7b_n,\quad a_1=-1,\quad b_1=1 \]
で定義される.このとき,次の問に答えよ.

(1)$a_3=-[ヒフ]$,$b_3=[ヘホ]$である.
(2)$a_{n+1}+\alpha b_{n+1}=\beta (a_n+\alpha b_n)$を満たす定数$\alpha,\ \beta$を求めると,
\[ (\alpha,\ \beta)=([マ],\ [ミ]),\ ([ム],\ [メ]) \]
となる.ただし,$[マ]<[ム]$である.

(3)一般項を求めると,
\[ a_n=\frac{[モ] \cdot [ヤ]^n-[ユ] \cdot [ヨ]^n}{2},\quad b_n=\frac{[ラ]^n-[リ]^n}{2} \]
となる.
北海道文教大学 私立 北海道文教大学 2010年 第2問
方程式$(m+1)x^2+2(m-1)x+2m-5=0$がただ$1$つの実数解をもつとき,定数$m$の値を求めなさい.
広島国際学院大学 私立 広島国際学院大学 2010年 第1問
$2$次方程式$x^2+2ax+a+2=0$が実数解を持つような,定数$a$の値の範囲を求めなさい.
岡山理科大学 私立 岡山理科大学 2010年 第3問
関数$f(x)=x^3-ax^2-a^2x+b$の極大値と極小値の差が$4$であるとき,次の設問に答えよ.

(1)定数$a$の値を求めよ.
(2)方程式$f(x)=0$が異なる$2$つの正の解と$1$つの負の解をもつような定数$b$の値の範囲を求めよ.
北海道薬科大学 私立 北海道薬科大学 2010年 第1問
次の各設問に答えよ.

(1)$\displaystyle \frac{4}{3+\sqrt{5}}+\frac{1}{2+\sqrt{5}}$を計算すると$[ ]$となる.

(2)$3^{2x}-2 \times 3^{x+2}=-81$を解くと,$x=[ ]$となる.
(3)$\overrightarrow{\mathrm{AB}}=(2,\ 3)$,$\overrightarrow{\mathrm{CB}}=(-4,\ 5)$とする.このとき,$\overrightarrow{\mathrm{AC}}=([ ],\ [ ])$であり,三角形$\mathrm{ABC}$の面積は$[ ]$である.
(4)$3$つの直線$ax+y=1$,$x+2y=3$,$x-ay=-3$が一点で交わるとき,定数$a$の値は
\[ [ ] \text{または} \frac{[ ]}{[ ]} \]
である.
北海道薬科大学 私立 北海道薬科大学 2010年 第3問
$x^2+y^2-6ax+4ay+19a^2-a-1=0$($a$は定数)は円を表すものとする.

(1)$a$の値の範囲は$\displaystyle \frac{[ ]}{[ ]}<a<\frac{[ ]}{[ ]}$である.

(2)この円の面積が最大となるとき,円の中心座標は$\displaystyle \left( \frac{[ ]}{[ ]},\ \frac{[ ]}{[ ]} \right)$であり,最大面積は$\displaystyle \frac{[ ]}{[ ]} \pi$となる.
このとき,座標$\displaystyle \left( -\frac{1}{3},\ 1 \right)$を通り,円の面積を二等分する直線の方程式は
\[ y=-[ ] x+\frac{[ ]}{[ ]} \]
である.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。