タグ「定数」の検索結果

119ページ目:全1257問中1181問~1190問を表示)
早稲田大学 私立 早稲田大学 2010年 第5問
四面体$\mathrm{OABC}$において,線分$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:1$に内分する点を$\mathrm{Q}$,線分$\mathrm{BC}$を$4:1$に内分する点を$\mathrm{R}$とする.この四面体を$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面で切り,この平面が線分$\mathrm{AC}$と交わる点を$\mathrm{S}$とするとき,線分の長さの比$\mathrm{AS}:\mathrm{SC}$を求めることを考えよう.\\
点$\mathrm{S}$は$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面上にあるから,定数$s,\ t,\ u$を用いて,
\[ \overrightarrow{\mathrm{OS}} = s \, \overrightarrow{\mathrm{OP}} + t \, \overrightarrow{\mathrm{OQ}} +u \, \overrightarrow{\mathrm{OR}} \quad (s+t+u=1) \]
と書くことができる.ここで,$\displaystyle \overrightarrow{\mathrm{OR}}=\frac{[ス]\overrightarrow{\mathrm{OB}}+[セ]\overrightarrow{\mathrm{OC}}}{[ソ]}$であるから,$\overrightarrow{\mathrm{OS}}$は$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$それぞれの定数倍の和として表すことができる.そこで,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$の係数をそれぞれ定数$s^{\prime},\ t^{\prime},\ u^{\prime}$とおくことにより
\[ \overrightarrow{\mathrm{OS}} = s^{\prime}\overrightarrow{\mathrm{OA}} + t^{\prime}\overrightarrow{\mathrm{OB}} +u^{\prime}\overrightarrow{\mathrm{OC}} \quad (18s^{\prime}+16t^{\prime}+11u^{\prime}=[タ]) \]
と書くことができる.ところが,点$\mathrm{S}$は線分$\mathrm{AC}$上にあることから,$s^{\prime},\ t^{\prime}\ u^{\prime}$を求めることができ,$\mathrm{AS}:\mathrm{SC}=[チ]:[ツ]$であることがわかる.
ただし,$[ソ]$,$[チ]$,$[ツ]$はできる限り小さい自然数で答えること.
早稲田大学 私立 早稲田大学 2010年 第6問
放物線$y=3x^2-12x (m \leqq x \leqq m+2)$と$3$直線$y=0$,$x=m$,$x=m+2$で囲まれた$2$つの部分の面積の和を$S$とする.ただし,$m$は定数で$2<m<4$とする.このとき,$S$は$m=[テ]+\sqrt{[ト]}$で最小値$[ナ]+[ニ]\sqrt{[ヌ]}$をとる.ただし,$[ヌ]$はできる限り小さい自然数で答えること.
早稲田大学 私立 早稲田大学 2010年 第3問
座標平面上で,C$_1$,C$_2$,C$_3$を,それぞれ,中心が$(0,\ 0),\ (3,\ 0),\ (5,\ 0)$,半径が$2,\ 1,\ 1$である円周とする.点Pは点$(2,\ 0)$を出発点とし,円周C$_1$上を反時計回りに等速で$2a$秒で一周する.点Qは点$(4,\ 0)$を出発点とし,先ず円周C$_2$上を反時計回りに等速で$a$秒で一周し,続いて円周C$_3$上を時計回りに等速で$a$秒で一周する.\\
\quad 点P,Qが同時に出発するとき,線分PQの長さの最大値と最小値を求めよ.
\quad ただし,$a$は正の定数である.
関西大学 私立 関西大学 2010年 第2問
$p$を$0 \leqq p<1$を満たす定数とし,$x$の関数$f(x)$を次のように定める.
\[ f(x)=|x+1|+|x-1|+|x-p| \]
以下の問いに答えよ.

(1)$\displaystyle p=\frac{1}{2}$として,$y=f(x)$のグラフの概形をかけ.
(2)$x$軸,$x=-1,\ x=1$と$y=f(x)$とで囲まれてできる図形の面積を$S$とする.$S$を$p$を用いて表せ.
(3)$S$を最小にする$p$の値と,そのときの$S$の値を求めよ.
金沢工業大学 私立 金沢工業大学 2010年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}$のとき,$\displaystyle x+\frac{1}{x}=\sqrt{[アイ]}$,$\displaystyle x^2+\frac{1}{x^2}=[ウ]$である.

(2)$|\abs{x-1|-2}=3$の解は$x=[エオ],\ [カ]$である.
(3)$2$つの$2$次関数$y=6x^2+2kx+k$,$y=-x^2+(k-6)x-1$のグラフが両方とも$x$軸と共有点をもたないような定数$k$の値の範囲は$[キ]<k<[ク]$である.
(4)$0^\circ \leqq \theta \leqq 180^\circ$で$\displaystyle \tan \theta=-\frac{4}{3}$のとき,$\displaystyle \cos \theta=\frac{[ケコ]}{[サ]}$であり,$\displaystyle \sin (180^\circ-\theta)=\frac{[シ]}{[ス]}$である.
(5)不等式$\displaystyle \frac{2x-5}{4}<\frac{x+4}{3} \leqq \frac{3x+1}{6}$の解は$\displaystyle [セ] \leqq x<\frac{[ソタ]}{[チ]}$である.
(6)$1$から$100$までの整数のうち,$4$の倍数かつ$6$の倍数である整数は$[ツ]$個あり,$4$の倍数または$6$の倍数である整数は$[テト]$個ある.
(7)$1$個のさいころを投げて,偶数の目が出たときはその目の数の$2$倍を得点とし,奇数の目が出たときはその目の数の$3$倍を得点とするゲームを行う.このとき,このゲームの得点の期待値は$\displaystyle \frac{[アイ]}{[ウ]}$である.
(8)図のように,直線$\ell$は中心を$\mathrm{O}$とする円と点$\mathrm{A}$において接している.また,$\ell$上の点$\mathrm{P}$と$\mathrm{O}$を通る直線と円との交点を図のように$\mathrm{B}$,$\mathrm{C}$とし,$\angle \mathrm{PAB}=115^\circ$であるとする.このとき,
\[ \angle \mathrm{ABC}=[エオ]^\circ,\quad \angle \mathrm{APC}=[カキ]^\circ \]
である.
(図は省略)
金沢工業大学 私立 金沢工業大学 2010年 第5問
放物線$y=x^2-5x$に直線$y=x+a$が接しているとする.ただし,$a$は定数とする.

(1)$a=[アイ]$であり,接点の座標は$([ウ],\ [エオ])$である.
(2)この放物線と直線,および$y$軸で囲まれた図形の面積は$[カ]$である.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2010年 第2問
$2$次関数$f(x) = ax^2 +bx+c$について,$f(0) = f(4) = 2$,最小値が$-4$となるように,定数$a,\ b,\ c$の値を定めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2010年 第2問
$2$次関数$f(x)=ax^2+bx+c$について,$f(0)=f(4)=2$,最小値が$-4$となるように,定数$a,\ b,\ c$の値を定めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2010年 第6問
関数$f(x) = ax^3 + bx^2 + cx + d$は$x = 1$で極値7をとり,$f(2) = 0$で,$\displaystyle \lim_{x \to 2} \frac{f(x)}{x^2-3x+2}=6$を満たす.このとき,定数$a,\ b,\ c,\ d$の値を求めよ.
北海学園大学 私立 北海学園大学 2010年 第3問
$\displaystyle a_1=3,\ a_2=4,\ a_{n+2}=\frac{4}{3}a_{n+1}-\frac{1}{3}a_n (n=1,\ 2,\ \cdots)$で定義される数列$\{a_n\}$がある.

(1)$n \geqq 2$のとき,$a_{n+1}-a_n=c(a_n-a_{n-1})$と$\displaystyle a_{n+1}-\frac{1}{3}a_n=d \left( a_n-\frac{1}{3}a_{n-1} \right)$を満たす定数$c$と$d$の値を求めよ.
(2)$n \geqq 1$のとき,$a_{n+1}-a_n$と$\displaystyle a_{n+1}-\frac{1}{3}a_n$を求めよ.
(3)数列$\{a_n\}$の一般項$a_n$と数列$\{a_n\}$の初項から第$n$項までの和$S_n$を求めよ.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。