タグ「定数」の検索結果

115ページ目:全1257問中1141問~1150問を表示)
佐賀大学 国立 佐賀大学 2010年 第4問
$p$を$0<p<1$を満たす定数とする.関数$y=x^3-(3p+2)x^2+8px$の区間$0 \leqq x \leqq 1$における最大値と最小値を求めよ.
鳥取大学 国立 鳥取大学 2010年 第4問
$a,\ k$は定数であり,$0<k<1$とする.次の問いに答えよ.

(1)方程式$x=a+k \sin x$はただ一つの実数解をもつことを示せ.
(2)不等式$|\sin \theta| \leqq |\,\theta\,|$がすべての実数$\theta$に対して成立することを示せ.
(3)不等式$|\sin \alpha-\sin \beta| \leqq |\alpha-\beta|$がすべての実数$\alpha,\ \beta$に対して成立することを示せ.
(4)数列$\{x_n\}$を,$x_0=0,\ x_n=a+k \sin x_{n-1} \ (n=1,\ 2,\ \cdots)$によって定める.数列$\{x_n\}$は(1)の方程式$x=a+k \sin x$の解に収束することを示せ.
愛媛大学 国立 愛媛大学 2010年 第5問
次の問いに答えよ.

(1)次の連立不等式を解け.
\[ \left\{
\begin{array}{l}
4x^2-4x-15<0 \\
x^2-2x \geqq 0
\end{array}
\right. \]
(2)$\displaystyle \frac{1}{x}+\frac{1}{y}=\frac{1}{3}$と$x \leqq y$の両方をみたす自然数の組$(x,\ y)$をすべて求めよ.
(3)方程式$\displaystyle \left( \log_2\sqrt{x}+\log_2x^2+\log_2\frac{1}{x} \right)^2=9$を解け.
(4)原点O,および3点A$(1,\ 0,\ 0)$,B$(0,\ 1,\ 0)$,C$(0,\ 0,\ 1)$がある.$0<s<1$に対して,線分AB,線分CAを$s:(1-s)$に内分する点を,それぞれP,Qとするとき,内積$\overrightarrow{\mathrm{OP}}\cdot \overrightarrow{\mathrm{OQ}}$を$s$を用いて表せ.
(5)等式$\displaystyle \int_0^{\frac{\pi}{4}} (x+a) \cos 2x \, dx=\frac{\pi}{8}$が成り立つとき,定数$a$の値を求めよ.
山形大学 国立 山形大学 2010年 第4問
数列$\{x_n\}$が
\[ x_1=1,\quad x_{n+1}=3x_n+\frac{1}{2^{n+1}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定められるとき,次の問いに答えよ.

(1)$x_2,\ x_3$を求めよ.
(2)$\displaystyle a_n=\frac{x_n}{3^n}$で定まる数列$\{a_n\}$は
\[ a_{n+1}=a_n+\frac{1}{6^{n+1}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすことを示せ.
(3)数列$\{x_n\}$の一般項を求めよ.
(4)$\displaystyle \lim_{n \to \infty}(x_n-3^nc)=0$となる定数$c$を求めよ.
山形大学 国立 山形大学 2010年 第1問
$k$を定数とする.$2$次関数$\displaystyle y=2x^2+kx-\frac{k}{2} \ \cdots\cdots①$について,次の問に答えよ.

(1)グラフの頂点の座標を$k$を用いて表せ.
(2)$k$を動かすとき,頂点の軌跡を求めよ.
(3)箱の中に$1$から$12$までの数字が$1$つずつ書かれた$12$枚のカードが入っている.その中から$3$枚のカードを同時に取り出す.このとき,次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) $2$けたの数字が書かれたカードの枚数が$0$,$1$,$2$,$3$となる確率をそれぞれ求めよ.
(ii) $2$けたの数字が書かれたカードの枚数を$k$とするとき,$2$次関数$①$の最小値が$-1$以下になる確率を求めよ.
福井大学 国立 福井大学 2010年 第4問
$p$を0でない実数とし,行列$A,\ B$をそれぞれ次のように定める.このとき,以下の問いに答えよ.
\[ A=\biggl( \begin{array}{cc}
p-\frac{1}{p} & 1 \\
2 & -p
\end{array} \biggr),\quad B=\biggl( \begin{array}{cc}
1 & 0 \\
\frac{1}{p} & -1
\end{array} \biggr) \]

(1)等式$A^{-1}=aA+bE$が成り立つ定数$a,\ b$を$p$で表せ.ただし,$E$は2次の単位行列である.
(2)$AB=C$とおく.$E+C$の逆行列が存在することを示し,さらに自然数$m$に対して等式
\[ E-C+C^2-C^3+\cdots -C^{2m-1}=(E-C^{2m})(E+C)^{-1} \]
が成り立つことを示せ.
(3)$p=\sqrt{3}$とし,自然数$n$に対し$D_n=E-C+C^2-C^3+\cdots -C^{6n-1}$とおく.行列$D_n$の表す1次変換により点$(2,\ 3)$が点$(x_n,\ y_n)$に移されるとする.$x_n$および$\displaystyle \frac{y_n}{x_n}$を求めよ.
秋田大学 国立 秋田大学 2010年 第1問
$2$次方程式$x^2 \sin \theta - x \cos(2\theta) + \sin \theta = 0$が重解をもつとき,次の問いに答えよ.ただし,$\theta$は$\displaystyle 0 < \theta < \frac{\pi}{2}$を満たす定数とする.

(1)$\sin \theta$の値を求めよ.
(2)$\displaystyle \sin \frac{\pi}{12}$の値を求めよ.
(3)$\theta$と$\displaystyle \frac{\pi}{12}$の大小を比較せよ.
山形大学 国立 山形大学 2010年 第2問
原点を中心とする半径1の円を$C_1$とする.$\displaystyle 0<\theta<\frac{\pi}{4}$を満たす定数$\theta$に対して,$C_1$上に点P$(\sin \theta,\ \cos \theta)$,点Q$(-\cos \theta,\ -\sin \theta)$,点R$(-\sin \theta,\ -\cos \theta)$をとる.さらに,Pを中心とし,Qを通る円を$C_2$,Rを中心とし,Qを通る円を$C_3$とする.このとき,次の問に答えよ.

(1)$C_2$と$C_3$の2つの交点のうち,Qと異なる点をSとする.このとき,$C_1$はSを通ることを証明せよ.
(2)Sの座標を$\theta$を用いて表せ.
(3)$C_2$と$C_3$で囲まれた部分の面積を求めよ.
群馬大学 国立 群馬大学 2010年 第2問
曲線$y=-x^2$を$C_1$とし,点$(1,\ -1)$での$C_1$の接線を$\ell$とする.また,点$(0,\ 2)$と点$(1,\ -1)$を通り,点$(1,\ -1)$での接線が$\ell$となる曲線$y=ax^2+bx+c$を$C_2$とする.ただし,$a,\ b,\ c$は定数とする.

(1)$\ell$の方程式を求めよ.
(2)$a,\ b,\ c$の値を求めよ.
(3)正の定数$k$について,直線$y=-kx$と$C_1$で囲まれた部分の面積と,直線$y=-kx$と$C_2$で囲まれた部分の面積が等しいとき,$k$の値を求めよ.
群馬大学 国立 群馬大学 2010年 第2問
曲線$y=-x^2$を$C_1$とし,点$(1,\ -1)$での$C_1$の接線を$\ell$とする.また,点$(0,\ 2)$と点$(1,\ -1)$を通り,点$(1,\ -1)$での接線が$\ell$となる曲線$y=ax^2+bx+c$を$C_2$とする.ただし,$a,\ b,\ c$は定数とする.

(1)$\ell$の方程式を求めよ.
(2)$a,\ b,\ c$の値を求めよ.
(3)正の定数$k$について,直線$y=-kx$と$C_1$で囲まれた部分の面積と,直線$y=-kx$と$C_2$で囲まれた部分の面積が等しいとき,$k$の値を求めよ.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。