タグ「定数」の検索結果

112ページ目:全1257問中1111問~1120問を表示)
金沢大学 国立 金沢大学 2010年 第4問
$a \ (a>0)$を定数とし,$f(x)=2a \log x - (\log x)^2$とする.関数$y = f(x)$のグラフは,$x$軸と点P$_1(x_1,\ 0)$,P$_2(x_2,\ 0) \ (x_1<x_2)$で交わっている.次の問いに答えよ.

(1)$x_1,\ x_2$の値を求めよ.また,$y = f(x)$の最大値と,そのときの$x$の値を求めよ.
(2)点P$_1$,P$_2$における$y=f(x)$の接線をそれぞれ$\ell_1,\ \ell_2$とする.$\ell_1$と$\ell_2$の交点の$x$座標を$X(a)$と表すとき,$\displaystyle \lim_{a \to \infty} X(a)$を求めよ.
(3)$a = 1$とするとき,$y = f(x)$のグラフと$x$軸で囲まれた図形の面積を求めよ.
岩手大学 国立 岩手大学 2010年 第1問
曲線$y=-x^2+3x$について,以下の問いに答えよ.

(1)曲線$y=-x^2+3x$と$x$軸で囲まれる図形の面積を求めよ.
(2)$a$を$0<a<3$をみたす定数とする.このとき,直線$y=ax$と曲線$y=-x^2+3x$との交点の$x$座標を求めよ.
(3)(1)の図形の面積を二等分する原点を通る直線を求めよ.
岩手大学 国立 岩手大学 2010年 第5問
関数$f(x)$が次の式で与えられている.
\[ f(x)=x^2-f^{\, \prime}(a)x+\int_{-b}^0f^{\, \prime}(t)\, dt \]
ここで,$a$と$b$は定数である.方程式$f(x)=0$が2つの異なる実数解$\alpha$と$\beta$をもつとき,次の問いに答えよ.

(1)$f^{\,\prime}(a)$を$\alpha$と$\beta$で表せ.
(2)$a$と$b$を,それぞれ$\alpha$と$\beta$で表せ.
岩手大学 国立 岩手大学 2010年 第5問
関数$f(x)$が次の式で与えられている.
\[ f(x)=x^2-f^{\, \prime}(a)x+\int_{-b}^0f^{\, \prime}(t)\, dt \]
ここで,$a$と$b$は定数である.方程式$f(x)=0$が$2$つの異なる実数解$\alpha$と$\beta$をもつとき,次の問いに答えよ.

(1)$f^{\,\prime}(a)$を$\alpha$と$\beta$で表せ.
(2)$a$と$b$を,それぞれ$\alpha$と$\beta$で表せ.
愛媛大学 国立 愛媛大学 2010年 第2問
直線$y=a(x+2)$と円$x^2+y^2-4x=0$は異なる2点P,Qで交わっているとする.また,線分PQの中点をRとする.

(1)定数$a$の値の範囲を求めよ.
(2)Rの座標を$a$を用いて表せ.
(3)原点Oと点Rの距離を求めよ.
(4)$a$の値が(1)で求めた範囲を動くとき,点Rの軌跡を求めよ.
和歌山大学 国立 和歌山大学 2010年 第5問
双曲線$x^2-y^2=1$の$x>0$の部分を$C$とする.$a$を正の定数とし,点P$\displaystyle (0,\ \frac{2}{a})$に最も近い$C$上の点をQとする.また,点R$(0,\ -a)$を通る直線が点Sで$C$に接している.このとき,次の問いに答えよ.

(1)点Qの座標および直線PQの傾きを$a$を用いて表せ.
(2)点Sの座標および直線RSの傾きを$a$を用いて表せ.
(3)3点P,Q,Rを通る円の直径を$a$を用いて表せ.
島根大学 国立 島根大学 2010年 第4問
次の問いに答えよ.

(1)$\displaystyle \lim_{x \to \infty} \left( \frac{x^3}{x^2-1}-x \right)$を求めよ.
(2)関数$\displaystyle y=\frac{x^3}{x^2-1}$の増減,極値,グラフの凹凸を調べ,そのグラフの概形をかけ.
(3)$k$を定数とするとき,方程式$x^3-kx^2+k=0$の異なる実数解の個数を調べよ.
富山大学 国立 富山大学 2010年 第2問
曲線$\displaystyle C_1:y=\sin 2x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と$x$軸で囲まれた図形が,曲線$\displaystyle C_2:y= k\cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2},\ k \text{は正の定数} \right)$によって2つの部分に分割されているとする.そのうちの,$C_1$と$C_2$で囲まれた部分の面積を$S_1$とし,$C_1$と$C_2$および$x$軸で囲まれた部分の面積を$S_2$とする.このとき,次の問いに答えよ.

(1)2曲線$C_1,\ C_2$の,点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$と異なる交点の$x$座標を$\alpha$とするとき,$k$を$\alpha$を用いて表せ.
(2)$S_1$を$\alpha$を用いて表せ.
(3)$S_1=2S_2$のとき,$k$の値を求めよ.
富山大学 国立 富山大学 2010年 第1問
曲線$\displaystyle C_1:y=\sin 2x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と$x$軸で囲まれた図形が,曲線$\displaystyle C_2:y= k\cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2},\ k \text{は正の定数} \right)$によって2つの部分に分割されているとする.そのうちの,$C_1$と$C_2$で囲まれた部分の面積を$S_1$とし,$C_1$と$C_2$および$x$軸で囲まれた部分の面積を$S_2$とする.このとき,次の問いに答えよ.

(1)2曲線$C_1,\ C_2$の,点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$と異なる交点の$x$座標を$\alpha$とするとき,$k$を$\alpha$を用いて表せ.
(2)$S_1$を$\alpha$を用いて表せ.
(3)$S_1=2S_2$のとき,$k$の値を求めよ.
香川大学 国立 香川大学 2010年 第5問
$0 \leqq x \leqq 2\pi$において,関数$f(x)$を
\[ f(x)=\frac{2a(\sin x+\cos x)}{2+2\sin x \cos x - a(\sin x+ \cos x)} \]
と定める.ここで,$a$は$0<a<2$をみたす定数である.このとき,次の問に答えよ.

(1)$t=\sin x+ \cos x$とおくとき,関数$f(x)$を$t$を用いて表せ.
(2)(1)で求めた関数を$g(t)$とするとき,関数$g(t)$の最大値と最小値を求めよ.
(3)関数$f(x)$が最大値,最小値をとるときのそれぞれの$x$の値を求めよ.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。