タグ「定数」の検索結果

110ページ目:全1257問中1091問~1100問を表示)
富山県立大学 公立 富山県立大学 2011年 第1問
$a$と$b$は定数とする.$2$つの関数$f(x)=x^2-2ax+a^2+b$,$g(x)=2 |x|$について,次の問いに答えよ.

(1)$b=0$のとき,$y=f(x)$と$y=g(x)$のグラフの共有点の個数が$4$個となるように,$a$の値の範囲を定めよ.
(2)$y=f(x)$と$y=g(x)$のグラフの共有点の個数が$1$個のとき,$a$と$b$が満たす条件を求めよ.
京都府立大学 公立 京都府立大学 2011年 第4問
座標平面上の楕円$C_1:4x^2+y^2=4$について,以下の問いに答えよ.

(1)$C_1$を$x$軸方向に$p$,$y$軸方向に$1$だけ平行移動した楕円を$C_2$とする.$1 \leqq k \leqq 2$を満たすすべての$k$に対して,直線$\ell:y=kx-3$と$C_2$が$2$個の共有点をもつとき,$p$の値の範囲を求めよ.
(2)$a,\ b,\ c,\ d,\ e$を定数とする.$C_1$を原点まわりに${75}^\circ$回転した$2$次曲線を
\[ C_3:x^2+axy+by^2+cx+dy+e=0 \]
とするとき,$a,\ b$の値を求めよ.
釧路公立大学 公立 釧路公立大学 2011年 第3問
半径が$a$の球に内接する直円錐のうち,体積が最も大きいものを直円錐$C$とし,その高さを$h$,体積を$V$とする.ただし,$a$は定数であり,円周率は$\pi$とする.このとき,以下の各問に答えよ.

(1)直円錐$C$の体積$V$を$h$の関数で表せ.
(2)$a=6$のとき,$h$と$V$を求めよ.
(3)$(2)$において,直円錐$C$の表面を底面の円と側面の扇形に分解したとき,扇形の中心角$\theta$を求めよ.
弘前大学 国立 弘前大学 2010年 第2問
$a>1$を定数とする.3つの放物線$\displaystyle y=x^2,\ y=\frac{1}{2}x^2,\ y=ax^2$の$x \geqq 0$の部分をそれぞれ,$C,\ C_1,\ C_2$とする.$C$上の点Pから$x$軸に下ろした垂線と2曲線$C,\ C_1$で囲まれた領域を$D_1$とする.Pから$y$軸に下ろした垂線と2曲線$C,\ C_2$で囲まれた領域を$D_2$とする.

(1)領域$D_1,\ D_2$の面積をそれぞれ$S_1,\ S_2$とする.点Pのとり方によらず常に$S_1=S_2$となるような$a$の値を求めよ.
(2)領域$D_1,\ D_2$を$y$軸のまわりに1回転してできる立体の体積をそれぞれ$V_1,\ V_2$とする.点Pのとり方によらず常に$V_1=V_2$となるような$a$の値を求めよ.
静岡大学 国立 静岡大学 2010年 第1問
$k$を定数とする.2次方程式$x^2+(3k-2)x+4k = 0$が2つの実数解$\alpha,\ \beta$をもち,$\alpha,\ \beta$は$0<\alpha<1<\beta$を満たすものとする.このとき,次の問いに答えよ.

(1)$k$の値の範囲を求めよ.
(2)$(\beta-\alpha)^2$を$k$を用いて表せ.
(3)$\alpha$と$\beta$の差が整数であるときの$k$および$\alpha,\ \beta$の値を求めよ.
静岡大学 国立 静岡大学 2010年 第1問
$k$を定数とする.2次方程式$x^2+(3k-2)x+4k = 0$が2つの実数解$\alpha,\ \beta$をもち,$\alpha,\ \beta$は$0<\alpha<1<\beta$を満たすものとする.このとき,次の問いに答えよ.

(1)$k$の値の範囲を求めよ.
(2)$(\beta-\alpha)^2$を$k$を用いて表せ.
(3)$\alpha$と$\beta$の差が整数であるときの$k$および$\alpha,\ \beta$の値を求めよ.
静岡大学 国立 静岡大学 2010年 第1問
$k$を定数とする.2次方程式$x^2+(3k-2)x+4k = 0$が2つの実数解$\alpha,\ \beta$をもち,$\alpha,\ \beta$は$0<\alpha<1<\beta$を満たすものとする.このとき,次の問いに答えよ.

(1)$k$の値の範囲を求めよ.
(2)$(\beta-\alpha)^2$を$k$を用いて表せ.
(3)$\alpha$と$\beta$の差が整数であるときの$k$および$\alpha,\ \beta$の値を求めよ.
金沢大学 国立 金沢大学 2010年 第2問
$a$を正の定数とする.2つの放物線$C_1:y=x^2$と$C_2:y=(x-2)^2+4a$の交点をPとする.次の問いに答えよ.

(1)放物線$C_1$上の点Q$(t,\ t^2)$における接線の方程式を求めよ.さらに,その接線のうち$C_2$に接するものを$\ell$とする.$\ell$の方程式を求めよ.
(2)点Pを通り$y$軸に平行な直線を$m$とする.$\ell$と$m$の交点をRとするとき,線分PRの長さを求めよ.
(3)直線$\ell,\ m$と放物線$C_1$で囲まれた図形の面積を求めよ.
埼玉大学 国立 埼玉大学 2010年 第4問
放物線$\displaystyle C:y=\frac{x^2}{2}$を考える.$0<a<\sqrt{2}$を満たす定数$a$に対して,点$\displaystyle \left(a^3,\ \frac{3a^2}{2}+1 \right)$をPで表す.

(1)点Pと$C$上の点$\displaystyle \left( t,\ \frac{t^2}{2}\right)$との距離が最小となる$t$を$a$を用いて表せ.
(2)(1)で求めた$t$に対して,点$\displaystyle \left( t,\ \frac{t^2}{2}\right)$をQとおく.点Qにおける$C$の接線と,直線PQは直交することを示せ.
(3)点Pと点Qとの距離が最大となるように$a$を定めよ.
広島大学 国立 広島大学 2010年 第1問
$k$は定数で,$k > 0$とする.曲線$C : y = kx^2 \ (x \geqq 0)$と2つの直線$\displaystyle \ell : y = kx+\frac{1}{k},\ m : y = -kx+\frac{1}{k}$との交点の$x$座標をそれぞれ$\alpha,\ \beta \ (0 < \beta < \alpha)$とするとき,次の問いに答えよ.

(1)$\alpha-\beta$の値を求めよ.
(2)$\alpha \beta,\ \alpha^2+ \beta^2$および$\alpha^3- \beta^3$を$k$を用いて表せ.
(3)曲線$C$と2直線$\ell,\ m$とで囲まれた部分の面積を最小にする$k$の値を求めよ.また,そのときの面積を求めよ.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。