タグ「定数」の検索結果

108ページ目:全1257問中1071問~1080問を表示)
千葉工業大学 私立 千葉工業大学 2011年 第1問
次の各問に答えよ.

(1)$2$次方程式$x^2-(2a+1)x-3a+1=0$($a$は定数)の$1$つの解が$x=-1$であるとき,$a=[ア]$であり,他の解は$x=[イ]$である.
(2)$\displaystyle \frac{5+14i}{4+i}=[ウ]+[エ]i$(ただし,$i^2=-1$)である.
(3)$(x^2+3x+2)(x^2-3x+2)=x^4-[オ]x^2+[カ]$である.
(4)$2n^2-9n-5 \leqq 0$をみたす整数$n$は全部で$[キ]$個ある.
(5)$10$本のくじのうち$4$本が当たりくじである.この中から,同時に$2$本のくじを引くとき,少なくとも$1$本は当たりくじである確率は$\displaystyle \frac{[ク]}{[ケ]}$である.
(6)ベクトル$\overrightarrow{a}=(1,\ 2,\ -1)$,$\overrightarrow{b}=(2,\ 1,\ 1)$において,内積$\overrightarrow{a} \cdot \overrightarrow{b}=[コ]$であり,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角は$[サシ]^\circ$である.
(7)$3^n>10000$をみたす最小の整数$n$は$[ス]$である.ただし,$\log_{10}3=0.4771$とする.
(8)$\displaystyle \int_{-2}^1 (x^2-2x+3) \, dx=[セソ]$である.
福岡大学 私立 福岡大学 2011年 第1問
次の$[ ]$をうめよ.

(1)等式$4x^2=a(x-1)(x-2)+b(x-1)+4$が$x$についての恒等式となるように定数$a,\ b$の組を定めると,$(a,\ b)=[ ]$である.また,このとき$2$次方程式$4x^2+ax+b=0$の$2$つの解を$\alpha,\ \beta$とすると,$\displaystyle \frac{\beta^2}{\alpha}+\frac{\alpha^2}{\beta}$の値は$[ ]$である.
(2)$0 \leqq x \leqq \pi$のとき,方程式$2 \sin^2 x+5 \cos x+1=0$を解くと,$x=[ ]$である.また,$0 \leqq y \leqq 2\pi$とするとき,不等式$\cos 2y+\sin y \geqq 0$を満たす$y$の値の範囲は$[ ]$である.
(3)$1$から$7$までの数字が$1$つずつ書かれた$7$枚のカードがある.この中から$3$枚のカードを同時にとりだす.このとき,カードの数字の和が奇数となる確率は$[ ]$である.また,カードの数字の和が奇数のときは,その$3$つの数の最大の値を得点とし,カードの数字の和が偶数のときには一律に$5$点を得点とするゲームを考えると,このゲームの期待値は$[ ]$点である.
神戸薬科大学 私立 神戸薬科大学 2011年 第2問
以下の文中の$[ ]$の中にいれるべき数または式を求めて記入せよ.

(1)$\displaystyle S=\sum_{n=1}^{18} (-1)^n \log_{10}(n+1)(n+2)$の値を計算すると$S=[ ]$である.
(2)$a>0,\ b>0,\ a+b=1$のとき,$\displaystyle \left( 2+\frac{1}{a} \right) \left( 2+\frac{1}{b} \right)$の最小値は$[ ]$である.
(3)$2$次方程式$x^2+ax+a^2-4=0$が正の解と負の解を$1$つずつ持つときの定数$a$の値の範囲は,$[ ]<a<[ ]$である.
(4)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が$S_n=2a_n+2n-5$で与えられている.このとき,$a_1=[ ]$である.また,$a_{n+1}$を$a_n$を用いて表すと$a_{n+1}=[ ]$である.
関西学院大学 私立 関西学院大学 2011年 第2問
座標空間において,原点を$\mathrm{O}$とし,点$\mathrm{A}(1,\ 0,\ 0)$をとる.また,$xy$平面上にあり,中心が原点,半径が$1$の円を$C$とするとき,以下の問いに答えよ.

(1)$C$の$y \geqq 0$の部分にある点$\mathrm{P}$について$\angle \mathrm{AOP}=t (0 \leqq t \leqq \pi)$とする.このとき,点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)点$\mathrm{Q}$を$\overrightarrow{\mathrm{OQ}}=-\overrightarrow{\mathrm{OP}}$を満たす点とし,点$\mathrm{B}(\sqrt{3},\ 1,\ 1)$をとる.このとき,内積$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{BQ}}$を求めよ.また,$|\overrightarrow{\mathrm{BP}}|^2=m-n \sin (t+\alpha)$となるような定数$\displaystyle m,\ n,\ \alpha \left( \text{ただし,} 0 \leqq \alpha \leqq \frac{\pi}{2} \right)$を求めよ.
(3)$\angle \mathrm{PBQ}=\theta$とおくとき,$\cos \theta$の最大値と最小値,およびそれらのときの$t$の値を求めよ.
(4)$\cos \theta$が上で求めた最小値をとるとき,三角形$\mathrm{PBQ}$の面積を求めよ.
青山学院大学 私立 青山学院大学 2011年 第3問
$x$の$3$次関数$f(x)=x^3+3tx^2+(4t^2-3t)x$について,次の問に答えよ.ただし$t$は定数である.

(1)$f(x)$が極大値と極小値をもつような$t$の値の範囲を求めよ.
(2)$t$が$(1)$の範囲にあるとき,極大値と極小値の和を$S$とする.$S$を$t$を用いて表せ.
(3)$t$が$(1)$の範囲にあるとき,$S$の最大値と,そのときの$t$の値を求めよ.
青山学院大学 私立 青山学院大学 2011年 第3問
放物線$y=ax^2+bx+c (a \neq 0)$が点$(0,\ 1)$を通り,かつ,その頂点の座標が$(\cos \theta,\ -\cos 2\theta)$であるとき,次の問に答えよ.ただし,定数$\theta$は$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$の範囲にある.

(1)$a$および$c$の値を求めよ.
(2)$b$を$\theta$を用いて表せ.
(3)関数$y=ax^2+bx+c (-1 \leqq x \leqq 1)$の最大値が$5$となるような$\theta$の値をすべて求めよ.
青山学院大学 私立 青山学院大学 2011年 第5問
曲線$y=e^{x^2}-1 (x \geqq 0)$を$y$軸のまわりに回転させてできる容器がある.この容器に,時刻$t$における水の体積が$vt$となるように,単位時間あたり$v$の割合で水を注入する.ただし,$v$は正の定数であり,$y$軸の負の方向を鉛直下方とする.

(1)不定積分$\displaystyle \int \log (y+1) \, dy$を求めよ.
(2)水面の高さが$h$となったときの容器内の水の体積$V$を,$h$を用いて表せ.ただし,$h$は容器の底から測った高さである.
(3)水面の高さが$e^{10}-1$となった瞬間における,水面の高さの変化率$\displaystyle \frac{dh}{dt}$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第5問
定数$a$に対して$f(x)=ax^2+3a$,$g(x)=2ax-a^2$とするとき,すべての実数$x$について$f(x)>g(x)$が成り立つための必要十分条件は$a>[チ]$であり,少なくとも$1$つの実数$x$について$f(x)>g(x)$が成り立つための必要十分条件は,$a>[ツ]$または$a<[テ]$である.
早稲田大学 私立 早稲田大学 2011年 第7問
$a>0$,$b \geqq 0$のとき,曲線$y=-a \cos \pi x+a+b (0 \leqq x \leqq 1)$を$x$軸のまわりに$1$回転してできる立体の体積を$V$とすると,
\[ V=\frac{\pi}{2}([ノ]a^2+[ハ]ab+[ヒ]b^2) \]
となる.また,ある定数$c$に対し$2a+b=c$が成り立つとすると,$\displaystyle a=\frac{c}{[フ]}$のとき,$V$は最小値$\displaystyle \frac{[ヘ]}{8}\pi c^2$をとる.
首都大学東京 公立 首都大学東京 2011年 第1問
$f(x)=\log x -2x+1 (x>0)$とする.$a$を正の定数とし,$t$は$0<t<a$をみたす実数とする.関数$y=f(x)$のグラフ上に$3$点$\mathrm{Q}$,$\mathrm{A}$,$\mathrm{P}$を,それぞれの$x$座標が$a-t,\ a,\ a+t$となるようにとる.以下の問いに答えなさい.

(1)$f(x)$の増減を調べ,$y=f(x)$のグラフをかきなさい.
(2)点$\mathrm{R}$が$\overrightarrow{\mathrm{AP}}+\overrightarrow{\mathrm{AQ}}=\overrightarrow{\mathrm{AR}}$を満たすとき,$\overrightarrow{\mathrm{AR}}$を求めなさい.
(3)四角形$\mathrm{APRQ}$の面積$S(t)$を求めなさい.
(4)$\displaystyle \lim_{t \to -0}\frac{S(t)}{t^3}$を求めなさい.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。