タグ「定数」の検索結果

104ページ目:全1257問中1031問~1040問を表示)
明治大学 私立 明治大学 2011年 第4問
次の空欄$[ア]$から$[ス]$に当てはまるものを入れよ.ただし連続した空欄$[シス]$は$2$桁の数字をあらわす.

$a$を正の定数とする.$2$点$\mathrm{A}(0,\ a)$,$\mathrm{B}(t,\ t^2)$の間の距離を$L(t)$とする.$L(t)$は$\displaystyle a \leqq \frac{1}{2}$の場合は$t=[ア]$で最小値$[イ]$をとり,$\displaystyle a>\frac{1}{2}$の場合は$|t|=[ウ]$のとき最小値$[エ]$をとる.
$\mathrm{A}(0,\ a)$を中心とする半径$1$の円$C_1$と放物線$C_2:y=x^2$が$2$点で接しているとき$\displaystyle a=\frac{[オ]}{[カ]}$であり,接点の座標は
\[ \left( \frac{\sqrt{[キ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right),\quad \left( -\frac{\sqrt{[キ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right) \]
である.このとき,円$C_1$と放物線$C_2$で囲まれた図形(下の図の灰色の部分)を$y$軸のまわりに$1$回転して得られる回転体の体積は$\displaystyle \frac{[サ]}{[シス]}\pi$である.
ただし,$2$つの曲線が共有点$\mathrm{P}$をもち,$\mathrm{P}$における$2$つの曲線の接線が一致す
るとき,これら$2$つの曲線は$\mathrm{P}$で接しているといい,$\mathrm{P}$を接点という.
(図は省略)
名城大学 私立 名城大学 2011年 第1問
次の$[ ]$に適切な答えを入れよ.

(1)$a,\ b$を正の定数とする.関数
\[ f(x)=a(1+\cos x)+b(3+\sin x) \quad (0 \leqq x<2\pi) \]
の最大値が$3$で最小値が$1$であるならば,$a+3b=[ア]$,$a=[イ]$である.
(2)$n$を自然数とする.$\displaystyle \frac{1}{n^2-3 \sqrt{2}n+5}$を最大にする$n$の値は$[ウ]$であり,そのときの最大値は分母を有理化すると$[エ]$である.
名城大学 私立 名城大学 2011年 第3問
$k$を正の定数とする.$3$つの直線
\[ \ell_1:y=kx,\quad \ell_2:y=-k^2x,\quad \ell_3:y=(k+1)x-3 \]
によって囲まれる三角形を考える.次の各問に答えよ.

(1)三角形の$3$つの頂点の座標を求めよ.
(2)三角形の面積を求めよ.
龍谷大学 私立 龍谷大学 2011年 第1問
$a$を定数とする.不等式
\[ x(x-3) \leqq a(3x-2a-6) \]
を解きなさい.
明治大学 私立 明治大学 2011年 第3問
以下の$[か]$から$[こ]$にあてはまるものを答えよ.

$a,\ b$を定数とするとき,$3$次の整式$f(x)=x^3+ax^2+bx-4$は,$x-2$で割ると$-2$余り,$2x-1$で割ると$\displaystyle -\frac{7}{8}$余るという.

(1)$a=[か]$,$b=[き]$である.
(2)方程式$f(x)=0$の解をすべて求めると,$[く]$である.
(3)方程式$f(x)=c$が異なる$3$つの実数解を持つような実数$c$の値の範囲は,$[け]$である.
(4)関数$f(x)$の区間$d \leqq x \leqq d+3$における最大値が$0$であるような実数$d$の値の範囲は,$[こ]$である.
明治大学 私立 明治大学 2011年 第4問
$2$つの関数
\[ f(x)=2e^{-x} |\sin x|,\quad g(x)=\sqrt{2}e^{-x} \]
を考える.方程式$f(x)-g(x)=0 (x \geqq 0)$の解を小さいものから順に$x_1,\ x_2,\ x_3,\ \cdots$とする.

(1)次の$[さ]$から$[す]$にあてはまるものを記入せよ.

(i) $x_k=[さ] (k=1,\ 2,\ 3,\ \cdots)$である.
(ii) $a,\ b$を定数とする.
\[ \frac{d}{dx} \{e^{-x}(a \sin x+b \cos x)\}=2e^{-x} \sin x \]
が成り立つのは,$a=[し]$,$b=[す]$のときである.

(2)$\displaystyle S_n=\int_{x_{2n-1}}^{x_{2n}} (f(x)-g(x)) \, dx (n=1,\ 2,\ 3,\ \cdots)$とおく.以下の解答は途中経過も書くこと.

(i) $S_1$を求めよ.
(ii) $S_n (n=2,\ 3,\ 4,\ \cdots)$を求めよ.
(iii) $\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
立教大学 私立 立教大学 2011年 第3問
数列$\{a_n\}$は次のように定められている.初項$a_1=0$であり,すべての自然数$n$に対して
\[ a_{n+1}=-a_n+\frac{1+(-1)^{n+1}}{2} \]
が成り立つ.このとき,次の問に答えよ.

(1)$a_3,\ a_4$を求めよ.
(2)$c$を定数として$b_n=(-1)^n(a_n+c)$とおく.$\{b_n\}$が等差数列になるためには$c$をどのように定めればよいか.$c$の値を求めよ.
(3)数列$\{a_n\}$の一般項を$n$を用いて表せ.
(4)数列$\{a_n\}$の第$2n$項までの$2$乗の和$S_{2n}={a_1}^2+{a_2}^2+\cdots +{a_{2n}}^2$を求めよ.
西南学院大学 私立 西南学院大学 2011年 第1問
$a,\ b$を実数の定数とする.$x$と$y$についての連立方程式
\[ \left\{ \begin{array}{l}
y=|x-1|-|x-2| \\
y=ax^2+bx
\end{array} \right. \]
について以下の問に答えよ.

(1)$a=0$,$b=0$のとき,解の組は$\displaystyle (x,\ y)=\left( \frac{[ア]}{[イ]},\ [ウ] \right)$である.
(2)$a=0$のとき連立方程式の解の組$(x,\ y)$が$3$個あるのは,$\displaystyle [エ]<b<\frac{[オ]}{[カ]}$のときである.
(3)$b=0$のとき連立方程式の解の組$(x,\ y)$が$2$個あるのは,$a<[キ]$または$\displaystyle [ク]<a<\frac{[ケ]}{[コ]}$のときである.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~ソに当てはまる数または式を記入せよ.

(1)$x$が$0<x<1$と$\displaystyle x^2+\frac{1}{x^2}=3$を満たすとき,$x^3$の値は$[ア]$である.
(2)不等式$\displaystyle \log_5 \left( \frac{x+1}{2} \right)+\log_5(x-4)<2$の解は$[イ]<x<[ウ]$である.
(3)$\sqrt{3} \sin \theta-\cos \theta>1 (-\pi<\theta<\pi)$を満たす$\theta$の範囲は,$[エ]<\theta<[オ]$である.
(4)$3$次方程式$x^3+3x^2-24x-a=0$が,異なる$3$つの実数解をもつような定数$a$の値の範囲は,$[カ]<a<[キ]$である.
(5)積分$\displaystyle \int_{-3}^3 |x^2-1| \, dx$の値は$[ク]$である.
(6)$2$次不等式$ax^2-4x+b<0$の解が$-3<x<5$であるとき,定数$a$は$[ケ]$であり,定数$b$は$[コ]$である.
(7)$2$つのベクトル$\overrightarrow{a}=(2,\ -1,\ 1)$と$\overrightarrow{b}=(x-2,\ -x,\ 4)$のなす角が$30^\circ$のとき,$x$の値は$[サ]$である.
(8)点$(x,\ y)$が直線$2x+3y=4$の上を動くとする.$4^x+8^y$が最小値をとるとき,$x,\ y$の値は$x=[シ]$,$y=[ス]$である.
(9)三角形$\mathrm{ABC}$の$\mathrm{A}$における角度は$45^\circ$,$\mathrm{C}$における角度は$75^\circ$,辺$\mathrm{AC}$の長さが$6$であるとき,辺$\mathrm{BC}$の長さは$[セ]$である.
\mon $0,\ 1,\ 2,\ 3$の数字から選んで$4$桁の自然数を作るとき,同じ数字を何回用いてもよいとすると,$2$の倍数でない自然数は$[ソ]$個できる.
立教大学 私立 立教大学 2011年 第2問
$a,\ b$は$a \neq b$を満たす定数とする.座標平面上に放物線$C_1$が$y=x^2+ax+b$で与えられ,放物線$C_2$が$y=x^2+bx+a$で与えられている.$C_1$上の点$\mathrm{P}(0,\ b)$での$C_1$の接線は,$C_2$上の点$\mathrm{Q}$で$C_2$に接しているとする.このとき,次の問に答えよ.

(1)$a$と$b$の間に成り立つ関係式を求めよ.
(2)点$\mathrm{Q}$の座標を$a$を用いて表せ.
(3)$C_1$と$C_2$の交点$\mathrm{R}$の座標を$a$を用いて表せ.
(4)放物線$C_1$,$C_2$と線分$\mathrm{PQ}$で囲まれる図形の面積$A$を求めよ.
(5)線分$\mathrm{PQ}$上に点$\mathrm{S}$を三角形$\mathrm{PRS}$の面積が$(4)$で求めた面積$A$と一致するようにとる.$\mathrm{S}$の$x$座標を求めよ.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。