タグ「定数」の検索結果

102ページ目:全1257問中1011問~1020問を表示)
山梨大学 国立 山梨大学 2011年 第2問
実数全体で定義された関数$F(x)$が次の条件$①$と$②$の両方を満たすとき「$F(x)$は性質$(\mathrm{P})$を持つ」ということにする.

$①$ すべての実数$x$について$F(x)>0$である.
$②$ $F(x)$は何度でも微分が可能で$\displaystyle \frac{d^2}{dx^2}\log F(x)=\frac{1}{\{F(x)\}^2}$を満たす.


(1)$y=f(x)$が性質$(\mathrm{P})$を持つとき$y^{\prime\prime}y-(y^\prime)^2=1$,$y^{\prime\prime\prime}y-y^{\prime\prime}y^\prime=0$となること,および$\displaystyle \frac{y^{\prime\prime}}{y}$は正の定数であることを示せ.
(2)$y=f(x)$は性質$(\mathrm{P})$を持つとする.$\displaystyle \frac{y^{\prime\prime}}{y}=k^2$($k$は正の定数)とおくとき,$k^2y^2-(y^\prime)^2=1$であることを示し,さらに$ky-y^\prime>0$および$ky+y^\prime>0$が成り立つことを示せ.
(3)$c$を実数とする.(2)のとき,関数$\displaystyle kf(c)y+\frac{1}{k}f^\prime(c)y^\prime$も性質$(\mathrm{P})$を持つことを証明せよ.ただし$①$を示すために
\[ kf(c)y+\frac{1}{k}f^\prime(c)y^\prime=f(c)(ky \mp y^\prime) \pm \frac{1}{k}y^\prime (kf(c) \pm f^\prime(c)) \quad (\text{複号同順}) \]
を利用してもよい.
東京海洋大学 国立 東京海洋大学 2011年 第2問
関数$f(x)=ax^2+bx+c$に対して次の等式が成り立っているとする.
\[ f^\prime(x)=x \int_{-2}^1 f(t) \, dt+\int_0^1 tf^\prime(t) \, dt \]
このとき,次の問に答えよ.ただし,$a,\ b,\ c$は定数で$a>0$とする.

(1)$b,\ c$を$a$で表せ.
(2)曲線$y=f(x)$の$\displaystyle x \geqq -\frac{1}{2}$の部分と$x$軸および$y$軸とで囲まれた図形の面積が$1$のとき,$a$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2011年 第3問
$a$を正の定数とする.関数$f(x)=x(a-x)$,$g(x)=x^2(a-x)$に対し,$2$つの曲線$C_1:y=f(x)$,$C_2:y=g(x)$を考える.以下の問いに答えよ.

ただし,$\displaystyle \int x^3 \, dx=\frac{x^4}{4}+C$($C$は積分定数)を用いてよい.

(1)$g(x)$の極値を$a$を用いて表せ.
(2)$0<a \leqq 1$とする.$C_1$と$x$軸で囲まれた図形の面積が,$C_2$と$x$軸で囲まれた図形の面積の$3$倍になるとき,$a$の値を求めよ.
(3)$a>1$とする.$2$曲線$C_1,\ C_2$で囲まれてできる$2$つの図形の面積が等しくなるとき,$a$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2011年 第4問
$a$を定数とする.放物線$C:y=x^2+a$上の点$(t,\ t^2+a) (t>0)$における接線$\ell$が原点を通るとする.直線$\ell$に関して$y$軸と対称な直線を$m$とする.

(1)$a$を$t$を用いて表せ.
(2)$y$軸と直線$\ell$のなす角を$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$とするとき,$\tan 2\theta$を$t$を用いて表せ.
(3)直線$m$の方程式を$t$を用いて表せ.
(4)放物線$C$と直線$m$が接するとき,$t$の値を求めよ.
(5)$(4)$のとき,放物線$C$を直線$\ell$に関して対称移動した曲線を$C_1$,直線$m$に関して対称移動した曲線を$C_2$とする.$C,\ C_1,\ C_2$で囲まれた図形の面積を求めよ.
大分大学 国立 大分大学 2011年 第2問
$x$の三次関数$y=ax^3+bx^2+cx+d$のグラフはある点に関して対称であることを証明せよ.ここに,$a,\ b,\ c,\ d$は定数で$a \neq 0$とする.
大分大学 国立 大分大学 2011年 第3問
実数の定数(パラメータ)$k$に対して,放物線$y=x^2$と直線$y=x+k$,$x=-1$,$x=2$で囲まれた図形の面積の最小値と,そのときの定数$k$を求めよ.
愛媛大学 国立 愛媛大学 2011年 第4問
自然数$n$を定数として,さいころを投げる次の競技を行う.この競技は,{\bf 試行}$1$と{\bf 試行}$2$からなる.競技者は,はじめに{\bf 試行}$1$を行う.
\begin{screen}

\mon[{\bf 試行}$1$] さいころを投げ,出た目の数を$X$とする.$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
$X$の値を得点として競技を終了する.
\mon[$\bullet$] $X=6$の場合
もし$n=1$ならば,$7$を得点として競技を終了する.
(★) \quad もし$n \geqq 2$ならば,{\bf 試行}$2$に進む.

\end{screen}
\begin{screen}

\mon[{\bf 試行}$2$] 競技者はさいころを投げる.
(★★) \quad 出た目の数を$X$とする.
$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
次のように定めた$P$を得点として競技を終了する.
\[ P=\left\{ \begin{array}{rl}
-1 & (X=1) \\
7 & (X=2,\ 3,\ 4) \\
13 & (X=5)
\end{array} \right. \]
\mon[$\bullet$] $X=6$の場合
もし競技開始から現時点までにさいころを投げた回数が$n$に等しいならば,$7$を得点として競技を終了する.
そうでないならば,続けてさいころを投げ,(★★)にもどる.

\end{screen}
以下の問いに答えよ.

(1)$n=1$として,{\bf 試行}$1$のみを行う.得点の期待値を求めよ.
(2)$n=4$とする.得点の期待値を求めよ.
(3)$n=30$とする.{\bf 試行}$1$を行い$X=6$になった.このとき,{\bf 試行}$1$の規則(★)を変更して,競技者は

\mon[(a)] 得点$7$を得て競技をただちに終了するか
\mon[(b)] 終了せずに{\bf 試行}$2$に進むか

どちらか一方を選択できるとする.どちらの選択をする方が得点の期待値が大きいか.
早稲田大学 私立 早稲田大学 2011年 第4問
$p,\ q$を実数の定数とする.$2$次方程式$x^2+px+q=0$は連続した$2$個の整数を解にもち,$2$次方程式$x^2+qx+p=0$は少なくとも$1$つの正の整数を解にもつ.このような定数$p,\ q$の組は$2$組あり,
\[ (p,\ q) = ([サ],\ [シ]),\ ([ス],\ [セ]) \]
である.ただし,$[サ]<[ス]$を満たすものとする.
早稲田大学 私立 早稲田大学 2011年 第4問
$a>0$とし,$x$-$y$平面上に3点O$(0,\ 0)$,A$(a,\ 0)$,P$(x,\ y)$をとる.$l$を与えられた正定数として,Pが
\[ 2\text{PO}^2 + \text{PA}^2 = 3l^2 \dotnum{*} \]
をみたすとする.このとき,次の各問に答えよ.

(1)\maru{*}をみたすPの集合が空集合とならないための$a$の条件を求め,そのときのP$(x,\ y)$の軌跡を表す方程式を求めよ.
(2)3点O,\ A,\ Pが一直線上にないようなPが存在するとき,OAを軸として,$\triangle$POAを回転して立体をつくる.この立体の体積が最大になるときのPの$x$座標と最大の体積$V$を,$a$を用いて表せ.
(3)(2)で求めた体積$V$を最大とする$a$の値とそのときの最大の体積を求めよ.
早稲田大学 私立 早稲田大学 2011年 第2問
正の定数$a,\ b,\ c$を用いて,$\triangle$ABCの内部の点Pは
\[ a\,\overrightarrow{\text{PA}} +b\, \overrightarrow{\text{PB}} +c\, \overrightarrow{\text{PC}} = \overrightarrow{0} \]
と表すことができる.ただし,$\overrightarrow{0}$は零ベクトルである.\\
\quad 次の問に答えよ.

(1)直線APと辺BCの交点をQとする.

(2)線分の長さの比$\text{BQ}:\text{QC}=t:1-t$とおくと
\[ \overrightarrow{\text{PQ}} = [\maru{1]} \overrightarrow{\text{PA}} + [\maru{2]} \overrightarrow{\text{PB}} \]
\quad と表せる.\maru{1},\ \maru{2}にあてはまる$t$の式を$a,\ b,\ c$を用いて表せ.
(3)線分の長さの比$\text{BQ}:\text{QC}$を$a,\ b,\ c$を用いて表せ.
(4)線分の長さの比$\text{AP}:\text{PQ}$を$a,\ b,\ c$を用いて表せ.


(5)面積の比$\triangle \text{PBC}: \triangle \text{PCA}: \triangle \text{PAB}$を$a,\ b,\ c$を用いて表せ.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。