タグ「存在」の検索結果

30ページ目:全303問中291問~300問を表示)
大阪教育大学 国立 大阪教育大学 2010年 第1問
平面上に,点O,Aを$|\overrightarrow{\mathrm{OA}}|=1$であるようにとる.Oを中心にAを反時計回りに,$\displaystyle \frac{\pi}{6}$回転させた位置にある点をB,$\displaystyle \frac{\pi}{2}$回転させた位置にある点をCとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$と表す.次の問に答えよ.

(1)$\overrightarrow{b}$を$\overrightarrow{a},\ \overrightarrow{c}$を用いて表せ.
(2)$\triangle$OABの面積と$\triangle$OBCの面積をそれぞれ求めよ.
(3)直線ACと直線OBとの交点をDとする.また,Bを通って直線ACに平行な直線と,直線OAとの交点をEとする.$\overrightarrow{d}=\overrightarrow{\mathrm{OD}},\ \overrightarrow{e}=\overrightarrow{\mathrm{OE}}$と表す.このとき,$|\overrightarrow{d}|$と$|\overrightarrow{e}|$をそれぞれ求めよ.
(4)次の式を満たす点Pの存在する領域の面積を求めよ.
\[ \overrightarrow{\mathrm{OP}}=s\overrightarrow{e}+t\overrightarrow{c},\quad (0 \leqq s,\ 0 \leqq t,\ 1 \leqq s+t \leqq 2) \]
山梨大学 国立 山梨大学 2010年 第2問
$y=x^2$を平行移動してできる放物線$C$は点$\mathrm{Q}(1,\ 1)$を通り,その軸の方程式は$x=p$で,$p<1$であるとする.点$\mathrm{Q}$における放物線$C$の接線を$\ell_1$,点$\mathrm{Q}$において$\ell_1$に直交する直線を$\ell_2$とし,$\ell_1$と$x$軸との交点を$\mathrm{A}$,$\ell_2$と$x$軸との交点を$\mathrm{B}$とする.また,点$\mathrm{Q}$の位置ベクトルを$\overrightarrow{q}=(1,\ 1)$で表し,直線$\ell_1,\ \ell_2$の方向ベクトルをそれぞれ$\overrightarrow{a}=(1,\ m),\ \overrightarrow{b}=(1,\ n)$とする.

(1)放物線$C$の方程式を$p$を使って表せ.
(2)$m$および$n$をそれぞれ$p$で表せ.
(3)$\triangle \mathrm{QAB}$の内部および周上の点を表す位置ベクトルを,実数$s,\ t$を用いて$\overrightarrow{v}=\overrightarrow{q}+s\overrightarrow{a}+t\overrightarrow{b}$と表すとき,点$(s,\ t)$の存在する領域を図示せよ.
滋賀医科大学 国立 滋賀医科大学 2010年 第4問
2回微分可能な関数$f(x)$,すなわち$f(x)$の導関数$f^\prime(x)$及び$f^\prime(x)$の導関数$f^{\prime\prime}(x)$が存在する関数が,すべての実数$x$について
\[ f^\prime(x)>f^{\prime\prime}(x) \]
を満たしている.また,$a<b$とする.

(1)$\displaystyle \frac{f^\prime(a)}{e^a}>\frac{f^\prime(b)}{e^b}$を示せ.
(2)$\displaystyle \frac{f^\prime(a)}{e^a}>\frac{f(b)-f(a)}{e^b-e^a}>\frac{f^\prime(b)}{e^b}$を示せ.
(3)すべての実数$x$について$f(x)>0$であるとき,すべての実数$x$について
\[ f(x)>f^\prime(x)>0 \]
が成立することを示せ.
福岡教育大学 国立 福岡教育大学 2010年 第4問
空間上に相異なる$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,線分$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$は互いに直交している.次の問いに答えよ.

(1)$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$からの距離が全て等しくなる点がただ一つ存在する.この点を$\mathrm{G}$とする.線分$\mathrm{OA}$の中点を$\mathrm{M}$とする.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{MG}}$が直交することを用いて,
\[ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OG}}=\frac{1}{2}|\overrightarrow{\mathrm{OA}}|^2 \]
となることを示せ.ただし,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OG}}$は$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OG}}$の内積とする.
(2)(1)を用いて,
\[ \overrightarrow{\mathrm{OG}}=\frac{1}{2}(\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}) \]
が成り立つことを示せ.
(3)$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{P}(1,\ \sqrt{3},\ 0)$,$\displaystyle \mathrm{Q} \left( -\frac{\sqrt{6}}{2},\ \frac{\sqrt{2}}{2},\ \sqrt{2} \right)$,$\displaystyle \mathrm{R} \left( \frac{\sqrt{6}}{4},\ -\frac{\sqrt{2}}{4},\ \frac{\sqrt{2}}{2} \right)$とする.このとき線分$\mathrm{OP}$,$\mathrm{OQ}$,$\mathrm{OR}$は互いに直交していることを示せ.また,$4$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る球面の半径を求めよ.
早稲田大学 私立 早稲田大学 2010年 第2問
$xy$平面上の点$(x_1,\ y_1)$に対して,点$(x_2,\ y_2)$,$(x_3,\ y_3)$,$\cdots$を次の式で順に定める.
\[ \left( \begin{array}{c}
x_{n+1} \\
y_{n+1}
\end{array} \right)=\left\{ \begin{array}{ll}
\left( \begin{array}{cc}
0 & -1 \\
1 & 0
\end{array} \right) \left( \begin{array}{c}
x_{n} \\
y_{n}
\end{array} \right) & (y_n \geqq 0 \text{のとき}) \\
\left( \begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array} \right) \left( \begin{array}{c}
x_{n} \\
y_{n}
\end{array} \right) & (y_n<0 \text{のとき})
\end{array} \right. \]
以下の問に答えよ.

(1)$(x_1,\ y_1) = (-1,\ 2)$のとき,$(x_3,\ y_3)$を求めよ.
(2)$(x_1,\ y_1) = (1,\ 0)$のとき,$(x_5,\ y_5)$を求めよ.
(3)$x_1>0$かつ$y_1>0$のとき,$(x_4,\ y_4) = (x_1,\ y_1)$となることを示せ.
(4)$(x_n,\ y_n)=(x_1,\ y_1)$となる$2$以上の整数$n$が存在しないとき,点$(x_1,\ y_1)$はどのような範囲にあるかを図示せよ.
関西大学 私立 関西大学 2010年 第1問
$b,\ c$を実数とし,$2$次方程式$x^2+bx+c=0$の解を$\alpha,\ \beta$とする.次の$[ ]$をうめよ.

(1)$\alpha=\cos \theta$,$\beta=\sin \theta$となる$0 \leqq \theta<2\pi$が存在すれば,$b$と$c$は等式$[$1$]$を満たす.
(2)$\alpha=3 \cos \theta$,$\beta=\sin \theta$となる$0 \leqq \theta<2\pi$が存在するという条件のもとで,$b$のとりうる最大の値は$[$2$]$であり,このとき$\alpha=[$3$]$,$\beta=[$4$]$である.また,同じ条件のもとで$c$のとりうる最大の値は$[$5$]$であり,このとき$\theta=[$6$]$,$[$7$]$である.ただし,$[$6$]<[$7$]$とする.
早稲田大学 私立 早稲田大学 2010年 第1問
次の問いに答えよ.

(1)平面上の$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 2)$,$\mathrm{B}(4,\ 0)$,$\mathrm{C}(1,\ 1)$に対し,線分$\mathrm{BC}$の垂直二等分線は$[ア]x+y+[イ]=0$となる.また,平面上で$\mathrm{PC} \leqq \mathrm{PO}$,$\mathrm{PC} \leqq \mathrm{PA}$,$\mathrm{PC} \leqq \mathrm{PB}$を満たす点$\mathrm{P}$の存在する範囲は$3$点$(0,\ 1)$,$(2,\ [ウ])$,$([エ],\ [オ])$を頂点とする三角形の内部および周であり,この三角形の面積は$[カ]$である.
(2)平面上に$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,点$\mathrm{O}$を定点として,$2$点$\mathrm{A}$,$\mathrm{B}$は次の条件を満たしながら動く.

$\angle \mathrm{AOB}=60^\circ$
$|\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}|^2+|\overrightarrow{\mathrm{OA}}-\overrightarrow{\mathrm{OB}}|^2=8$

さらに,点$\mathrm{C}$を$\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}$となるようにとるとき,$|\overrightarrow{\mathrm{OC}}|$の最大値は$\sqrt{[キ]}$である.
西南学院大学 私立 西南学院大学 2010年 第5問
$xy$平面上の$3$点$(0,\ -13)$,$(1,\ -6)$,$(3,\ 2)$を通る$2$次関数のグラフ$y=f(x)$があり,これと$x$軸で囲まれた部分の中に存在する平行四辺形$\mathrm{ABCD}$を考える.ここで,平行四辺形の辺$\mathrm{AB}$は$x$軸上にあり,点$\mathrm{C}$と点$\mathrm{D}$は$2$次関数のグラフ上にある.ただし,点$\mathrm{A}$の$x$座標は点$\mathrm{B}$の$x$座標より小さく,点$\mathrm{C}$の$x$座標は$4$より大きいものとする.このとき,次の問に答えよ.

(1)上の条件を満たす$f(x)$を求めよ.
(2)点$\mathrm{C}$の$x$座標を$t$とするとき,平行四辺形$\mathrm{ABCD}$の面積$S$を$t$を用いて表せ.
(3)平行四辺形$\mathrm{ABCD}$の面積$S$の最大値を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2010年 第4問
$k$を実数の定数とするとき,下記の問いに答えなさい.

(1)$f(x)=2x^3+x^2-5x+3$,$g(x)=x^4+x^2-(k+1)x+k$とおく.$k$の値が変化するとき,曲線$y=f(x)$と$y=g(x)$の共有点の個数を調べなさい.
(2)$x$についての方程式$\displaystyle 6 \tan x+\cos x-k \sin x=0 \left( 0<x<\frac{\pi}{2} \right)$を考える.$k$の値が変化するとき,実数解の個数が$2$個であるのは$[$1$]$のときである.また実数解の個数が$1$個であるのは$[$2$]$のときであり,実数解が存在しないのは$[$3$]$のときである.
$[$1$]$,$[$2$]$,$[$3$]$に該当する$k$の条件を答えなさい.
名古屋市立大学 公立 名古屋市立大学 2010年 第3問
次の問いに答えよ.

(1)方程式$x^2-xy-4x+2y+3=0$が表す曲線の概形を描け.その曲線が$x$軸および$y$軸と交差する場合にはその交点の座標を明記すること.また,漸近線が存在する場合には,その漸近線も描き,その式を明記すること.
(2)(1)で描かれた曲線と$x$軸および$y$軸で囲まれる図形をA,また(1)で描かれた曲線が$x$軸と$y$軸で交わる点を結んでできる図形をBとする.領域$A \cap B$の面積を求めよ.
スポンサーリンク

「存在」とは・・・

 まだこのタグの説明は執筆されていません。