タグ「存在」の検索結果

26ページ目:全303問中251問~260問を表示)
名城大学 私立 名城大学 2011年 第4問
関数$f(x)=x^3+(2a-1)x^2-2a+3$($a$は実数)について,次の問に答えよ.

(1)$y=f(x)$のグラフは$a$の値によらず$2$つの定点を通ることを示せ.
(2)$f(x)$の極大値が存在するような$a$の値の範囲を求めよ.また,そのときの極大値を与える$x$の値を$m$とすると,$m$を$a$を用いて表せ.
(3)$(2)$のとき,点$(m,\ f(m))$の軌跡を座標平面上に図示せよ.
明治大学 私立 明治大学 2011年 第3問
自然数$n,\ k$について,$xy$平面上で$0 \leqq y \leqq x$と$y \leqq 2n+k-x$で定まる領域を$C_k$とする.ある整数$a,\ b$に対して,$(a,\ b)$,$(a+k,\ b)$,$(a,\ b+k)$,$(a+k,\ b+k)$を頂点にもつ正方形を$1$辺が$k$の格子点の正方形と呼ぶ事にする.$C_k$に入る格子点の正方形を考える($C_k$の境界も含める).このとき,次の問いに答えよ.

(1)$n=4$のとき,$C_k$内に$1$辺が$k$の格子点の正方形が存在するための,最大の$k$をもとめよ.
(2)$1$辺が$k$の格子点の正方形が,$C_k$内に存在するための$k$の条件を,$n$であらわせ.
(3)$C_k$内にある$1$辺が$k$の格子点の正方形の総数を$a_k$とするとき,$a_k$を$n$と$k$の式であらわせ.
(4)$a_1+a_2+\cdots +a_n$をもとめよ.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$\mathrm{X}$大学には$5$つの学部があり,全ての学部で入学試験を行っている.次の$7$つの命題$(\mathrm{A})$~$(\mathrm{G})$の中で,お互いに否定命題となっている全ての組を以下の選択肢から選べ.もし,否定命題となっている組で選択肢にないものが存在するときは,$z$もマークせよ.

$(\mathrm{A})$ $\mathrm{X}$大学のある学部の入学試験科目には,数学がある.
$(\mathrm{B})$ $\mathrm{X}$大学の学部の中で,入学試験科目に数学があるのはただ一つである.
$(\mathrm{C})$ $\mathrm{X}$大学の全ての学部の入学試験科目には,数学がある.
$(\mathrm{D})$ $\mathrm{X}$大学には,入学試験科目に数学がない学部がある.
$(\mathrm{E})$ $\mathrm{X}$大学の全ての学部の入学試験科目には,数学がない.
$(\mathrm{F})$ $\mathrm{X}$大学の学部の中で,入学試験科目に数学がないのはただ一つである.
$(\mathrm{G})$ $\mathrm{X}$大学には,入学試験科目に数学がある学部とない学部の両方がある.

選択肢:
\[ \begin{array}{rlp{1mm}rlp{1mm}rlp{1mm}rl}
1. & (\mathrm{A}) \text{と} (\mathrm{C}) & & 2. & (\mathrm{A}) \text{と} (\mathrm{D}) & & 3. & (\mathrm{A}) \text{と} (\mathrm{E}) & & 4. & (\mathrm{A}) \text{と} (\mathrm{G}) \\
5. & (\mathrm{B}) \text{と} (\mathrm{F}) & & 6. & (\mathrm{B}) \text{と} (\mathrm{G}) & & 7. & (\mathrm{C}) \text{と} (\mathrm{D}) & & 8. & (\mathrm{C}) \text{と} (\mathrm{E}) \\
9. & (\mathrm{C}) \text{と} (\mathrm{G}) & & 10. & (\mathrm{D}) \text{と} (\mathrm{E}) & & 11. & (\mathrm{D}) \text{と} (\mathrm{G}) & & 12. & (\mathrm{E}) \text{と} (\mathrm{F})
\end{array} \]
(2)$f(0)=1$,$g(0)=2$を満たす$2$つの整式$f(x)$,$g(x)$に対して$p(x)=f(x)+g(x)$,$q(x)=f(x)g(x)$とおく.$\displaystyle \frac{d}{dx}p(x)=3$,$\displaystyle \frac{d}{dx}q(x)=4x+k$であるとき,$k=[ア]$または$[イ]$である.ただし$[ア]<[イ]$である.
(3)方程式$4^{x+1}+3 \cdot 2^x-1=0$の解は$x=[ウ]$である.
学習院大学 私立 学習院大学 2011年 第4問
$a,\ b$を実数とする.$3$次方程式$x^3-3ax^2+a+b=0$が$3$個の相異なる実数解をもち,そのうち$1$個だけが負となるための$a,\ b$の満たす条件を求めよ.また,その条件を満たす点$(a,\ b)$の存在する領域を平面上に図示せよ.
神奈川大学 私立 神奈川大学 2011年 第3問
座標平面上で,原点$\mathrm{O}$を中心とする半径$1$の円$C$に,この円の外にある点$\mathrm{P}$から$2$本の接線をひき,それらのなす角のうち$C$を挟むものの大きさを$\theta$とする.さらに,線分$\mathrm{OP}$の長さを$r$とする.このとき,次の問いに答えよ.

(1)$\displaystyle \cos \frac{\theta}{2}$を$r$を用いて表せ.

(2)$\cos \theta$を$r$を用いて表せ.

(3)$\displaystyle \theta=\frac{\pi}{3}$を満たす点$\mathrm{P}$の軌跡を求めよ.

(4)$\displaystyle \frac{\pi}{3} \leqq \theta \leqq \frac{2\pi}{3}$を満たす点$\mathrm{P}$の存在する領域の面積を求めよ.
(図は省略)
藤田保健衛生大学 私立 藤田保健衛生大学 2011年 第1問
$k$を定数とする.方程式$x^2-|x|-6=k$を満足する実数$x$がちょうど$3$個あるのは$k=[ ]$のときであり,この方程式を満足する実数$x$が存在しないのは$k$の範囲が$[ ]$のときである.
東北医科薬科大学 私立 東北医科薬科大学 2011年 第2問
中心が$\mathrm{O}$で半径$1$の円上の点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対し
\[ \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+4k \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \quad{(零ベクトル)} \]
を満たす実数$k$が存在するという.このとき,次の問に答えなさい.

(1)特に$k=0$のとき$\mathrm{AB}=[ア]$である.
以下$0<k$とする.
(2)$\angle \mathrm{AOB}=\theta$とおく.$0<\theta<\pi$とするとき,$\displaystyle k=\frac{[イ]}{[ウ]} \cos \frac{\theta}{[エ]}$が成り立つ.
(3)$F=\mathrm{AB}^2+\mathrm{BC}^2+\mathrm{CA}^2$を$k$の式で表すと
\[ F=[オカキ] k^2+[ク] k+[ケ] \]
である.
(4)$F$は$\displaystyle k=\frac{[コ]}{[サ]}$のとき最大値$[シ]$をとる.
大同大学 私立 大同大学 2011年 第6問
次の問いに答えよ.

(1)$2x^2-19x+a<0$をみたす実数$x$が存在するとき,定数$a$の値の範囲は$\displaystyle a<\frac{[ ]}{[ ]}$である.$2x^2-19x+a<0$をみたす整数$x$がただ$1$つ存在するとき,その整数$x$は$[ ]$であり,定数$a$の値の範囲は$[ ] \leqq a<[ ]$である.
(2)外接円の半径が$16$である$\triangle \mathrm{ABC}$において$\displaystyle \cos B=\frac{\sqrt{7}}{4}$,$\displaystyle \cos C=\frac{3 \sqrt{7}}{8}$とするとき,$\displaystyle \sin B=\frac{[ ]}{[ ]}$,$\mathrm{AC}=[ ]$,$\mathrm{BC}=[ ] \sqrt{[ ]}$である.
首都大学東京 公立 首都大学東京 2011年 第1問
$a$を実数とする.関数$\displaystyle f(x)=\sin x+a\cos^2 x -\frac{1}{4}$について,以下の問いに答えなさい.

(1)$a=1$とするとき,$0 \leqq x \leqq 2\pi$における$f(x)$の増減と極値を調べて,$y=f(x)$のグラフをかきなさい.
(2)$f(x)$の極値をあたえる$x$が$0 < x<\pi$の範囲に$1$個だけ存在するための$a$についての必要十分条件を求めなさい.
富山県立大学 公立 富山県立大学 2011年 第2問
四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$と辺$\mathrm{BC}$を$t:(1-t)$に内分する点を,それぞれ$\mathrm{D}$と$\mathrm{F}$とする.また,辺$\mathrm{AB}$と辺$\mathrm{CO}$を$\displaystyle \frac{t}{3}:\left( 1-\frac{t}{3} \right)$に内分する点を,それぞれ$\mathrm{E}$と$\mathrm{G}$とする.ただし,$0<t<1$である.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$としたとき,次の問いに答えよ.

(1)$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ t$を用いて,$\overrightarrow{\mathrm{OD}}$,$\overrightarrow{\mathrm{OE}}$,$\overrightarrow{\mathrm{OF}}$,$\overrightarrow{\mathrm{OG}}$を表せ.
(2)$\displaystyle t=\frac{3}{4}$のとき,$4$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$が同一平面上に存在することを示せ.
(3)$(2)$のとき,線分$\mathrm{DF}$と線分$\mathrm{EG}$の交点を$\mathrm{H}$とする.$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて$\overrightarrow{\mathrm{OH}}$を表せ.
スポンサーリンク

「存在」とは・・・

 まだこのタグの説明は執筆されていません。