タグ「存在」の検索結果

25ページ目:全303問中241問~250問を表示)
京都教育大学 国立 京都教育大学 2011年 第5問
放物線$C:y=-x^2+1$上の異なる$2$点$\mathrm{A}(a,\ -a^2+1)$,$\mathrm{B}(b,\ -b^2+1)$におけるそれぞれの接線$\ell,\ m$が直交するとする.次の問に答えよ.

(1)任意の実数$r$に対して
\[ \alpha+\beta=r,\quad \alpha\beta=-\frac{1}{4} \]
をみたす実数$\alpha,\ \beta$が存在することを示せ.
(2)$\mathrm{A}$と$\mathrm{B}$が上の条件をみたしながら動くとき,直線$\mathrm{AB}$が$\mathrm{A}$と$\mathrm{B}$の取り方によらず常に通る点の座標を求めよ.
(3)$\ell$と$m$の交点の軌跡を求めよ.
滋賀医科大学 国立 滋賀医科大学 2011年 第3問
文字$x,\ y,\ z$の任意の整式$A$に対して,$x,\ y,\ z$をそれぞれ$\sin \theta,\ \cos \theta,\ \tan \theta$に置き換えて得られる$\theta$の関数を$\widetilde{A}(\theta)$で表す.例えば,
\[ \begin{array}{lll}
P=x^5+z^4-xyz & \text{ならば} & \widetilde{P}(\theta)=\sin^5 \theta+\tan^4 \theta-\sin \theta \cos \theta \tan \theta, \\
P=x^2+y^2,\ Q=1 & \text{ならば} & \widetilde{P}(\theta)=\sin^2 \theta+\cos^2 \theta=1=\widetilde{Q}(\theta)
\end{array} \]
である.ただし$\theta$の関数の定義域は$\displaystyle 0 \leqq \theta \leqq 2\pi,\ \theta \neq \frac{\pi}{2},\ \frac{3\pi}{2}$とする.

(1)$P$を$x,\ y,\ z$の整式とする.$\widetilde{P}(\theta)=\widetilde{Q}(\theta)$となる$y,\ z$の整式$Q$が存在することを示せ.
(2)$P$を$x,\ y,\ z$の整式とする.$\widetilde{P}(0)=\widetilde{P}(\pi)$ならば,$\widetilde{P}(\theta)=\widetilde{Q}(\theta)$となる$x,\ z$の整式$Q$が存在することを示せ.
(3)$P$を$x,\ y,\ z$の整式とする.$\displaystyle \theta \to \frac{\pi}{2}$のとき,および$\displaystyle \theta \to \frac{3\pi}{2}$のとき,$\widetilde{P}(\theta)$がそれぞれ収束するならば,$\widetilde{P}(\theta)=\widetilde{Q}(\theta)$となる$x,\ y$の整式$Q$が存在することを示せ.収束とは,一定の実数に限りなく近づくことである.
東京海洋大学 国立 東京海洋大学 2011年 第3問
三角形$\mathrm{OAB}$において,次を証明せよ.

(1)ベクトル$\overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$とベクトル$\overrightarrow{\mathrm{OB}}+t \overrightarrow{\mathrm{OA}}$の長さが等しくなるような$\pm 1$以外の実数$t$が存在することは$\mathrm{OA}=\mathrm{OB}$であるための必要十分条件である.
(2)ベクトル$\overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$とベクトル$\overrightarrow{\mathrm{OB}}+t \overrightarrow{\mathrm{OA}}$が垂直になるような$t<-1$である実数$t$が存在することは$\angle \mathrm{AOB}<90^\circ$であるための必要十分条件である.
早稲田大学 私立 早稲田大学 2011年 第4問
$a>0$とし,$x$-$y$平面上に3点O$(0,\ 0)$,A$(a,\ 0)$,P$(x,\ y)$をとる.$l$を与えられた正定数として,Pが
\[ 2\text{PO}^2 + \text{PA}^2 = 3l^2 \dotnum{*} \]
をみたすとする.このとき,次の各問に答えよ.

(1)\maru{*}をみたすPの集合が空集合とならないための$a$の条件を求め,そのときのP$(x,\ y)$の軌跡を表す方程式を求めよ.
(2)3点O,\ A,\ Pが一直線上にないようなPが存在するとき,OAを軸として,$\triangle$POAを回転して立体をつくる.この立体の体積が最大になるときのPの$x$座標と最大の体積$V$を,$a$を用いて表せ.
(3)(2)で求めた体積$V$を最大とする$a$の値とそのときの最大の体積を求めよ.
明治大学 私立 明治大学 2011年 第1問
長方形$\mathrm{ABCD}$は,各辺の長さが整数で,面積が$1728$である.また$\mathrm{AB}<\mathrm{BC}$であるとする.下記の空欄内の各文字に当てはまる数字を答えよ.

(1)長方形$\mathrm{ABCD}$は$[ア][イ]$通り存在する.
(2)可能な長方形について$\mathrm{AB}+\mathrm{BC}$の総和は$\kakkofour{ウ}{エ}{オ}{カ}$となる.
(3)辺$\mathrm{AB}$の長さの最大値は$[キ][ク]$である.
上智大学 私立 上智大学 2011年 第1問
$a,\ b,\ c$は整数で,$a \geqq 1,\ b \geqq 0,\ c \geqq 0$とする.$x$の2次式$P(x)=ax^2+bx+c$を考える.

(1)$P(1)=2$を満たす$P(x)$は全部で[ア]個存在する.
(2)条件 \[ \lceil P(n)=5 \text{を満たす自然数}n\text{が存在する}\rfloor \]
を満たす$P(x)$は全部で[イ]個存在する.
このような$P(x)$のうち,$P(3)=17$を満たすものは
\[ P(x) = [ウ]x^2+[エ]x+[オ] \]
である.
(3)条件
\[ \lceil P(n)=3 \text{を満たす自然数}n\text{が存在し,} \]
\[ \qquad \qquad \text{かつ,任意の自然数}m\text{に対して}P(m)\text{が奇数である}\rfloor \]
を満たす$P(x)$のうち,$a$が最大のものは
\[ P(x) = [カ]x^2+[キ]x+[ク] \]
であり,$a$が最小のものは
\[ P(x) = [ケ]x^2+[コ]x+[サ] \]
である.
自治医科大学 私立 自治医科大学 2011年 第15問
$2$点$(1,\ 4)$,$(2,\ 5)$を通り,$y$軸に接する円は$2$つ存在する.それぞれの円の半径を$a,\ b$とするとき,$ab$の値を求めよ.
早稲田大学 私立 早稲田大学 2011年 第7問
平面上の点$(x,\ y)$で,$\displaystyle \left( \frac{x}{3} \right)^{2n}+\left( \frac{y}{2} \right)^{2n}<1$を満たすような自然数$n$が存在するための必要十分条件は,$[ヌ]<x<[ネ]$かつ$[ノ]<y<[ハ]$である.
自治医科大学 私立 自治医科大学 2011年 第18問
同一直線上に,それぞれ異なる$3$つの点,$\mathrm{A}(k+2,\ 5)$,$\mathrm{B}(6,\ 5-2k)$,$\mathrm{C}(5,\ 3)$が存在するとき,$k$の値を求めよ.
明治大学 私立 明治大学 2011年 第2問
次の各問の$[ ]$にあてはまる数を記入せよ.

座標空間内に点$\mathrm{P}(s+3,\ 2s-1,\ 2s+1)$と点$\mathrm{Q}(2s+3,\ 1-2s,\ s-1)$がある.ただし,$s$は実数全体を動く.次の問に答えよ.
(1)線分$\mathrm{PQ}$の長さは
\[ \sqrt{[ア] \left( [イ]s^2-[ウ]s+[エ] \right)} \]
であり,$\displaystyle s=\frac{[オ]}{[カ]}$のときに最小値$\sqrt{[キ]}$をとる.

(2)$\mathrm{O}$を原点とし,$\theta=\angle \mathrm{POQ}$とする.$\cos \theta$のとる値の範囲を求めよう.$k=\cos \theta$とおくと
\[ k=\frac{[クケ]s+[コ]}{[サ]s^2+[シ]s+[スセ]} \cdots\cdots (*) \]
である.

(i) $\displaystyle s=-\frac{[コ]}{[クケ]}$のとき$k=0$となる.
(ii) $k \neq 0$のときに$(*)$を満たす実数$s$が存在するための条件は
\[ -\frac{[ソ]}{[タ]} \leqq k \leqq \frac{[チ]}{[ツ]} \]
である.

$(ⅰ),\ (ⅱ)$より$\cos \theta$のとる値の範囲は
\[ -\frac{[ソ]}{[タ]} \leqq \cos \theta \leqq \frac{[チ]}{[ツ]} \]
である.また,$\displaystyle \cos \theta=\frac{[チ]}{[ツ]}$となるのは$\displaystyle s=\frac{[テ]}{[ト]}$のときである.
スポンサーリンク

「存在」とは・・・

 まだこのタグの説明は執筆されていません。