タグ「存在」の検索結果

22ページ目:全303問中211問~220問を表示)
法政大学 私立 法政大学 2012年 第2問
直線$y=5x-9$を$\ell$とおく.また,$k$は実数の定数とする.

(1)放物線$y=x^2+ax-3$の頂点が$\ell$上にあるような実数$a$の値をすべて求めよ.
(2)放物線$y=x^2+ax+k$の頂点が$\ell$上にあるような実数$a$が少なくとも$1$つ存在するための$k$に関する条件を求めよ.
(3)実数の定数$a_1$と$a_2$に対し,放物線$y=x^2+a_1x+k$と$y=x^2+a_2x+k$の頂点がともに$\ell$上にあり,それら$2$頂点の間の距離が$13$であるとき,$k$の値を求めよ.
法政大学 私立 法政大学 2012年 第4問
$0 \leqq \theta<2\pi$とする.

(1)$\sin \theta-\sqrt{3} \cos \theta \geqq -1$を満たす$\theta$の値の範囲を求めよ.
(2)$(1)$で求めた範囲の$\theta$について,$4 \cos^3 \theta+3 \sqrt{3} \cos^2 \theta$の最大値と最小値を求めよ.また,そのときの$\theta$の値を求めよ.
(3)$k$は実数の定数とする.$4 \cos^3 \theta+3 \sqrt{3} \cos^2 \theta=k$かつ$\sin \theta-\sqrt{3} \cos \theta \geqq -1$を満たす$\theta$が,ちょうど$3$個存在するような,$k$の値の範囲を求めよ.
獨協大学 私立 獨協大学 2012年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)${(2x+3y)}^3+{(2x-3y)}^3$を展開すると$[$1$]$になる.
(2)$-1<a<0<b<c$とするとき,
\[ -\frac{a}{c},\ \frac{a}{c},\ \frac{1}{ac},\ -\frac{1}{ab},\ -\frac{1}{ac} \]
の$5$つの数のうち,小さい方から$2$番目の数は$[$2$]$であり$4$番目の数は$[$3$]$である.
(3)$\displaystyle \frac{\pi}{2} \leqq \theta<\frac{3\pi}{2}$のときに
\[ 2 \sin^3 \theta-\sin \theta=0 \]
の解をすべて記すと$[$4$]$である.
(4)$a,\ b$を定数とする$x$に関する$3$次方程式
\[ 2x^3+ax^2+bx-10=0 \]
の$2$つの解が$x=1,\ 2$であるとき,$a=[$5$]$,$b=[$6$]$であり,もう$1$つの解は$[$7$]$である.
(5)$\mathrm{P}$,$\mathrm{E}$,$\mathrm{N}$,$\mathrm{C}$,$\mathrm{I}$,$\mathrm{L}$の文字が$1$つずつ刻まれているタイルが$6$枚ある.これらを横$1$列に並べるとき,$\mathrm{P}$が$\mathrm{E}$より左で,かつ,$\mathrm{N}$が$\mathrm{E}$より右となる確率は$[$8$]$である.
(6)$a$を定数とする方程式$x^3-6x^2-a=0$の異なる実数解は,$a$の値が$[$9$]$の場合には$3$個,$[$10$]$または$[$11$]$の場合には$2$個,$[$12$]$または$[$13$]$の場合には$1$個,それぞれ存在する.
(7)$\alpha$を実数として,空間における原点$\mathrm{O}$と$2$点$\mathrm{A}(-1,\ \alpha,\ \alpha)$,$\mathrm{B}(1,\ 2,\ \alpha)$を考える.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を最小にする$\alpha$の値は$[$14$]$であり,このとき,三角形$\mathrm{OAB}$の面積は$[$15$]$である.
(8)点$\mathrm{O}$を中心とする半径$1$の円の円周上に点$\mathrm{A}$をとり,点$\mathrm{A}$における接線上に$\mathrm{AB}=2$となる点$\mathrm{B}$をとる.次に,点$\mathrm{B}$から$\mathrm{BC}=2$となるように円周上に点$\mathrm{A}$とは異なる点$\mathrm{C}$をとる.このとき,三角形$\mathrm{OAC}$の面積は$[$16$]$であり,$\sin \angle \mathrm{CAB}=[$17$]$である.
(図は省略)
近畿大学 私立 近畿大学 2012年 第2問
$f(x)=x^2-4x+7$とし,放物線$y=f(x)$上の$2$点$\mathrm{A}(t,\ f(t))$,$\mathrm{B}(t+a,\ f(t+a)) (a>0)$における$y=f(x)$の接線をそれぞれ$\ell_\mathrm{A}$,$\ell_\mathrm{B}$とする.また$\ell_\mathrm{A}$と$\ell_\mathrm{B}$の交点を$\mathrm{P}$とする.

(1)点$\mathrm{P}$の座標は
\[ \left( t+\frac{a}{[ア]},\ t^{[イ]}+(a-[ウ])t-[エ]a+[オ] \right) \]
である.このことから,$t$が変化するとき,点$\mathrm{P}$は曲線
\[ y=x^{[カ]}-[キ]x-\frac{a^{[ク]}}{[ケ]}+[コ] \]
上を動く.
(2)$\mathrm{AB}=\mathrm{AP}$となる実数$t$が存在するための必要十分条件は$\displaystyle a \geqq \frac{[サ]}{[シ]}$である.
近畿大学 私立 近畿大学 2012年 第2問
$f(x)=x^2-4x+7$とし,放物線$y=f(x)$上の$2$点$\mathrm{A}(t,\ f(t))$,$\mathrm{B}(t+a,\ f(t+a)) (a>0)$における$y=f(x)$の接線をそれぞれ$\ell_\mathrm{A}$,$\ell_\mathrm{B}$とする.また$\ell_\mathrm{A}$と$\ell_\mathrm{B}$の交点を$\mathrm{P}$とする.

(1)点$\mathrm{P}$の座標は
\[ \left( t+\frac{a}{[ア]},\ t^{[イ]}+(a-[ウ])t-[エ]a+[オ] \right) \]
である.このことから,$t$が変化するとき,点$\mathrm{P}$は曲線
\[ y=x^{[カ]}-[キ]x-\frac{a^{[ク]}}{[ケ]}+[コ] \]
上を動く.
(2)$\mathrm{AB}=\mathrm{AP}$となる実数$t$が存在するための必要十分条件は$\displaystyle a \geqq \frac{[サ]}{[シ]}$である.
大阪府立大学 公立 大阪府立大学 2012年 第4問
$a$を正の定数とする.実数の変数$x$の関数$f(x)=(x+a)e^{2x^2}$について,以下の問いに答えよ.

(1)一階導関数$f^\prime(x)$はある多項式$g(x)$により$f^\prime(x)=g(x)e^{2x^2}$と表され,二階導関数$f^{\prime\prime}(x)$はある多項式$h(x)$により$f^{\prime\prime}(x)=h(x)e^{2x^2}$と表される.$g(x),\ h(x)$を求めよ.
(2)関数$f(x)$が極大値と極小値をもつための$a$の値の範囲を求めよ.
(3)$a$が(2)で求めた範囲にあるとする.関数$f(x)$が極大値をとる$x$の値を$\alpha$とし,極小値をとる$x$の値を$\beta$とする.このとき,$f^{\prime\prime}(\gamma)=0$となる$\gamma$が$\alpha$と$\beta$の間に存在することを示せ.
兵庫県立大学 公立 兵庫県立大学 2012年 第5問
$xy$平面上の$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ 0)$,$\mathrm{B}(0,\ b)$,および,$\mathrm{C}(a,\ b)$ \\
$(0<a<b)$を頂点とする長方形$\mathrm{OACB}$と,辺$\mathrm{OA}$上の定点 \\
$\mathrm{S}(s,\ 0) (0<s<a)$を考える.次の問に答えなさい.
\img{562_2720_2012_1}{25}


(1)辺$\mathrm{AC}$,$\mathrm{CB}$,$\mathrm{BO}$上に各々点$\mathrm{T}$,$\mathrm{U}$,$\mathrm{V}$を適切にとれば,四角形 \\
$\mathrm{STUV}$は長方形となる.このとき,$\mathrm{AT}=t$として,$t$が満たすべ \\
き条件を$a,\ b,\ s,\ t$を用いて表しなさい.また,定点$\mathrm{S}$に対して, \\
長方形$\mathrm{OACB}$に内接するこのような長方形$\mathrm{STUV}$は$2$つ存在することを示しなさい.
(2)(1)で考えた$2$つの内接する長方形の面積の和は長方形$\mathrm{OACB}$の面積に等しいことを証明しなさい.
宮城大学 公立 宮城大学 2012年 第4問
数直線上の点$\mathrm{P}$を,サイコロを投げ,偶数の目が出たら正の方向に出た目の数だけ動かし,奇数の目が出たら負の方向に出た目の数だけ動かす.$\mathrm{P}$を最初原点$0$に置き,サイコロを$2$回投げたとき,$\mathrm{P}$の位置する場所について,次の問いに答えよ.ただし,サイコロは$1$から$6$までのどの目も同じ確率で出るものとする.

(1)$\mathrm{P}$が位置する可能性がある点(存在する確率が正の点)をすべて書け.
(2)$\mathrm{P}$が位置する可能性が最も高い点を求めよ.
(3)$\mathrm{P}$の座標の期待値を求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2012年 第4問
整数$m$が与えられたとき,$x$に関する整数係数の$2$つの整式$f(x)$,$g(x)$が関係式
\[ f(x) \equiv g(x) \pmod m \]
を満たすとは,等式$f(x)-g(x)=mh(x)$を満たすような整数係数の整式$h(x)$が存在することである.

(1)$f(x),\ g(x),\ F(x),\ G(x)$を整数係数の整式とする.もし,ある整数$m$について関係式$f(x) \equiv g(x) \pmod m$,かつ$F(x) \equiv G(x) \pmod m$が満たされるならば,関係式$f(x)+F(x) \equiv g(x)+G(x) \pmod m$,かつ$f(x)F(x) \equiv g(x)G(x) \pmod m$が満たされることを証明せよ.
(2)正整数$p (>1)$を素数とする.$p$より小さい任意の正整数$i$に対して二項係数$\comb{p}{i}$は$p$の倍数であることを証明せよ.
(3)正整数$p (>1)$を素数とする.任意の正整数$n$について,関係式
\[ (1+x)^{p^n} \equiv 1+x^{p^n} \pmod p \]
が満たされることを証明せよ.
(4)正整数$p (>1)$を素数とし,$n$を$2$以上の正整数とする.$n-1$個の二項係数$\comb{n}{i} (1 \leqq i \leqq n-1)$がすべて$p$の倍数であるための必要十分条件は,整数$n$が素数$p$の正べきである(すなわち,適当な正整数$k$を用いて$n=p^k$と表せる)ことを証明せよ.
京都大学 国立 京都大学 2011年 第6問
空間内に四面体$\mathrm{ABCD}$を考える.このとき.$4$つの頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$を同時に通る球面が存在することを示せ.
スポンサーリンク

「存在」とは・・・

 まだこのタグの説明は執筆されていません。