タグ「存在」の検索結果

18ページ目:全303問中171問~180問を表示)
埼玉大学 国立 埼玉大学 2012年 第1問
実数$t$に対し,$xy$平面において$2$つの位置ベクトル
\[ \overrightarrow{\mathrm{OA}} = \left(\strut \frac{t}{2}+1,\ \frac{t}{2} \right),\ \overrightarrow{\mathrm{OB}} = \left(\strut t,\ \frac{t^2}{2} \right) \]
を考える.

(1)次の条件を満たす$t$が存在する実数$s$の範囲を求めよ.\\
\quad $\lceil$ベクトル$\overrightarrow{\mathrm{AB}}$は,ベクトル$(1,\ s)$に平行である.$\rfloor$
(2)次の条件を満たす$t$が存在する実数$s$の範囲を求めよ.\\
\quad $\lceil$ベクトル$\overrightarrow{\mathrm{AB}}$は,ベクトル$(1,\ s)$に平行であり,かつ$t>1$である.
信州大学 国立 信州大学 2012年 第2問
$\log_x y + 2\log_y x \leqq 3$を満たす点$(x,\ y)$の存在する領域を図示せよ.
信州大学 国立 信州大学 2012年 第4問
$xy$平面上の点$(a,\ b)$から曲線$y=x^3-2x$に接線をひく.点$(a,\ b)$からの接線が3本ひけるときの$a,\ b$についての条件を求め,点$(a,\ b)$の存在する領域を図示せよ.
信州大学 国立 信州大学 2012年 第2問
次の$3$条件をすべてみたす$xy$平面上の円$C$が存在するような実数$t$を求めよ.

(i) 円$C$の半径は$3$である.
(ii) 円$C$は$x$軸に接する.
(iii) 点$\mathrm{P}(t,\ t^2)$は円$C$上にあり,点$\mathrm{P}$における円$C$の接線の方程式は$y=2tx-t^2$である.
信州大学 国立 信州大学 2012年 第4問
実数$a$は$a>-1$とする.関数$f(x)=3x^3-7x^2+5x-1$に対し,
\[ -1<c<a,\ \frac{f(a)-f(-1)}{a+1}=f^{\, \prime}(c) \]
となる$c$がちょうど2つ存在するような$a$の値の範囲を求めよ.
信州大学 国立 信州大学 2012年 第2問
$xy$平面上の点$(a,\ b)$から曲線$y = x^3-2x$に接線をひく.点$(a,\ b)$からの接線が3本ひけるときの$a,\ b$についての条件を求め,点$(a,\ b)$の存在する領域を図示せよ.
大分大学 国立 大分大学 2012年 第3問
関数$\displaystyle y=f(x)=x^3-\frac{3}{2}x^2+\frac{3}{2}$に関して,次の問いに答えよ.

(1)$y=f(x)$と$y=x$のグラフを描け.
(2)$\displaystyle 1<x_0<\frac{3}{2}$に対して,$x_{n+1}=f(x_n) \ (n=0,\ 1,\ 2,\ \cdots)$を定義する.このとき,$x_n > x_{n+1} \ (n=0,\ 1,\ 2,\ \cdots)$を示せ.
(3)数列$\{a_n\}$が単調減少で,ある実数$L$に対して$a_n > L \ (n=0,\ 1,\ 2,\ \cdots)$ならば$\displaystyle \lim_{n \to \infty}a_n$が存在する.このことを用いて,数列$\{x_n\}$の極限を求めよ.
鳥取大学 国立 鳥取大学 2012年 第2問
$a,\ b,\ c$を正の整数とするとき,等式
\[ \left( 1+\frac{1}{a} \right) \left( 1+\frac{1}{b} \right) \left( 1+\frac{1}{c} \right)=2 \cdots (*) \]
について次の問いに答えよ.

(1)$c=1$のとき,等式$(*)$を満たす正の整数$a,\ b$は存在しないことを示せ.
(2)$c=2$のとき,等式$(*)$を満たす正の整数$a$と$b$の組で$a \geqq b$を満たすものをすべて求めよ.
(3)等式$(*)$を満たす正の整数の組$(a,\ b,\ c)$で$a \geqq b \geqq c$を満たすものをすべて求めよ.
富山大学 国立 富山大学 2012年 第2問
$x>0$のとき,$\tan \theta =x$となる$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲にただ1つ存在する.その$\theta$を$f(x)$と表すことにする.

(1)$\displaystyle f \left( \frac{2}{k} \right)+f \left( \frac{2}{l} \right) = \frac{\pi}{4}$を満たす自然数の組$(k,\ l)$を求めよ.ただし,$k \leqq l$とする.
(2)自然数$m,\ n$について,$\displaystyle \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を$m$と$n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を求めよ.
富山大学 国立 富山大学 2012年 第2問
$x>0$のとき,$\tan \theta =x$となる$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲にただ1つ存在する.その$\theta$を$f(x)$と表すことにする.

(1)$\displaystyle f \left( \frac{2}{k} \right)+f \left( \frac{2}{l} \right) = \frac{\pi}{4}$を満たす自然数の組$(k,\ l)$を求めよ.ただし,$k \leqq l$とする.
(2)自然数$m,\ n$について,$\displaystyle \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を$m$と$n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を求めよ.
スポンサーリンク

「存在」とは・・・

 まだこのタグの説明は執筆されていません。