タグ「存在」の検索結果

17ページ目:全303問中161問~170問を表示)
広島市立大学 公立 広島市立大学 2013年 第2問
$p,\ q$を実数の定数とする.$2$次関数$f(x)=x^2+px+q$について,以下の問いに答えよ.

(1)$f(a)=a$を満たす実数$a$が存在するための$p,\ q$についての必要十分条件を求めよ.
(2)$f(a)=b,\ f(b)=a$を満たす異なる実数$a,\ b$が存在することと,$p,\ q$が不等式$(p-1)^2-4(q+1)>0$を満たすことは同値であることを証明せよ.
首都大学東京 公立 首都大学東京 2013年 第2問
実数$a$に対し
\[ I=\int_0^1 |xe^x-a| \, dx \]
とする.以下の問いに答えなさい.ただし,$e$は自然対数の底とする.

(1)$0<a<e$のとき,$te^t=a$を満たす実数$t (0<t<1)$がただ$1$つ存在することを示しなさい.
(2)$0<a<e$のとき,$I$の値を$(1)$の$t$を用いて表しなさい.
(3)$a$がすべての実数を動くとき,$I$の値を最小にする$a$とそのときの$I$の値を求めなさい.
大阪府立大学 公立 大阪府立大学 2013年 第3問
$2$つの曲線$C_1:y=\log x$および$C_2:y=\sqrt{ax}$を考える.ただし,$a$は正の定数である.このとき,以下の問いに答えよ.

(1)曲線$C_1$上の点$(t,\ \log t)$における接線$\ell_1$の方程式,および曲線$C_2$上の点$(s,\ \sqrt{as})$における接線$\ell_2$の方程式を求めよ.ただし,$t>0,\ s>0$である.
(2)曲線$C_1$と曲線$C_2$の両方に接する直線が存在しないための$a$の値の範囲を求めよ.
大阪府立大学 公立 大阪府立大学 2013年 第4問
以下の問いに答えよ.

(1)$a,\ c$を実数の定数とする.$a>0$のとき,方程式$2x^3-3ax^2=c$の相異なる実数解の個数を求めよ.
(2)$3$次関数$y=x^3-3x$のグラフを$G$とする.$x$座標が正である座標平面上の点$\mathrm{P}(a,\ b)$を通る$G$の接線が$3$本存在するための,$a,\ b$の条件を求めよ.
高崎経済大学 公立 高崎経済大学 2013年 第3問
以下の各問いに答えよ.

(1)$x$の$2$次不等式$x^2-(a+2)x+2a<0$の解が$1<x<2$となるような定数$a$の値を求めよ.
(2)$x$の$2$次不等式$x^2-(a+2)x+2a<0$と$3x^2+2x-1>0$を同時に満たす整数$x$がただ$1$つ存在するように,定数$a$の範囲を求めよ.
愛知県立大学 公立 愛知県立大学 2013年 第2問
座標平面上で,原点$\mathrm{O}$を始点とし第$1$象限の点$\mathrm{A}$を通る半直線$\mathrm{OA}$と$x$軸の正の向きとのなす角を$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$とする.点$\mathrm{B}$は$x$軸上にあり,$|\overrightarrow{\mathrm{OB}}|=b$,$|\overrightarrow{\mathrm{OA}}|=a$とする.原点$\mathrm{O}$から直線$\mathrm{AB}$に下ろした垂線と直線$\mathrm{AB}$との交点を$\mathrm{P}$とする.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}=t \overrightarrow{\mathrm{AB}}$とおく.$\overrightarrow{\mathrm{OP}}=t \overrightarrow{\mathrm{OB}}+(1-t) \overrightarrow{\mathrm{OA}}$であることを示し,$t$を$a,\ b,\ \theta$で表せ.
(2)$\theta$を固定し$b=1$とする.点$\mathrm{P}$が線分$\mathrm{AB}$上に存在するような$a$の値の範囲を求めよ.
(3)(2)において,$\triangle \mathrm{OAB}$の面積の最大値を求めよ.
(4)(2)において,$\displaystyle \theta=\frac{\pi}{3}$とする.面積が最大となる$\triangle \mathrm{OAB}$は直角三角形であることを示せ.
鳥取環境大学 公立 鳥取環境大学 2013年 第1問
不等式に関する以下の問に答えよ.

(1)座標平面上で,不等式$x^2+6x+y^2+2y+6 \leqq 0$と$y \geqq -2x-3$の両方を満たす点$(x,\ y)$の存在する領域を図示せよ.
(2)点$(x,\ y)$が$(1)$の領域を動くとき,$x$と$y$は不等式$x^2+y^2 \leqq 4$を満たすことを証明せよ.
岡山大学 国立 岡山大学 2012年 第1問
$a$を正の実数とし,$x,\ y$に関する次の不等式を考える.
\[ \begin{array}{ll}
3y \geqq 5x & \cdots\cdots① \\
4y \geqq 7a & \cdots\cdots② \\
x-y \geqq 3-a & \cdots\cdots③
\end{array} \]

(1)$①,\ ②$を同時に満たす点$(x,\ y)$のなす領域を$xy$平面上に図示せよ.
(2)$①,\ ②,\ ③$を同時に満たす実数の組$(x,\ y)$が存在するような$a$の範囲を求めよ.
大阪大学 国立 大阪大学 2012年 第5問
1個のさいころを3回続けて投げるとき,1回目に出る目を$\ell$,2回目に出る目を$m$,3回目に出る目を$n$で表すことにする.こ
のとき,以下の同いに答えよ.

(1)極限値
\[ \lim_{x \to -1} \frac{l x^2+mx+n}{x+1} \]
が存在する確率を求めよ.
(2)関数
\[ f(x) = \frac{l x^2+mx+n}{x+1} \]
が,$x > -1$の範囲で極値をとる確率を求めよ.
埼玉大学 国立 埼玉大学 2012年 第1問
実数$t$に対し,$xy$平面において$2$つの位置ベクトル
\[ \overrightarrow{\mathrm{OA}} = \left(\strut \frac{t}{2}+1,\ \frac{t}{2} \right),\ \overrightarrow{\mathrm{OB}} = \left(\strut t,\ \frac{t^2}{2} \right) \]
を考える.

(1)次の条件を満たす$t$が存在する実数$s$の範囲を求めよ.\\
\quad $\lceil$ベクトル$\overrightarrow{\mathrm{AB}}$は,ベクトル$(1,\ s)$に平行である.$\rfloor$
(2)次の条件を満たす$t$が存在する実数$s$の範囲を求めよ.\\
\quad $\lceil$ベクトル$\overrightarrow{\mathrm{AB}}$は,ベクトル$(1,\ s)$に平行であり,かつ$t>1$である.
スポンサーリンク

「存在」とは・・・

 まだこのタグの説明は執筆されていません。