タグ「媒介変数」の検索結果

4ページ目:全61問中31問~40問を表示)
東京都市大学 私立 東京都市大学 2014年 第1問
次の問に答えよ.

(1)$a$を正の実数とするとき,$x$の方程式$\displaystyle \left( \log_{10} \frac{x}{a} \right)(\log_{10}ax)=\log_{10}a$が解をもつような$a$の範囲を求めよ.
(2)媒介変数$t$を用いて半直線が$\left\{ \begin{array}{l}
x=1+2t \\
y=1+3t
\end{array} \right. (t \geqq 0)$と表されている.$xy$平面上の点$(3,\ 0)$との距離が最小となるような,半直線上の点の座標を求めよ.
(3)袋の中に$10$個の球があり,そのうち赤球は$x$個,白球は$(10-x)$個である.この袋から球を同時に$3$個取り出す.$3$個とも赤球である確率が$\displaystyle \frac{1}{30}$であるときの$x$の値を求めよ.
筑波大学 国立 筑波大学 2013年 第2問
$n$は自然数とする.

(1)$1 \leqq k \leqq n$を満たす自然数$k$に対して
\[ \int_{\frac{k-1}{2n}\pi}^{\frac{k}{2n}\pi} \sin 2nt \cos t \, dt=(-1)^{k+1} \frac{2n}{4n^2-1} \left( \cos \frac{k}{2n}\pi+\cos \frac{k-1}{2n}\pi \right) \]
が成り立つことを示せ.
(2)媒介変数$t$によって
\[ x=\sin t,\quad y=\sin 2nt \quad (0 \leqq t \leqq \pi) \]
と表される曲線$C_n$で囲まれた部分の面積$S_n$を求めよ.ただし必要なら
\[ \sum_{k=1}^{n-1} \cos \frac{k}{2n}\pi=\frac{1}{2} \left( \frac{1}{\tan \displaystyle\frac{\pi}{4n}} -1 \right) \quad (n \geqq 2) \]
を用いてよい.
(3)極限値$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(図は省略)
山梨大学 国立 山梨大学 2013年 第3問
曲線$C$は媒介変数$\displaystyle t \ \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$によって,$\displaystyle x=\sqrt{\cos t}\cos \frac{t}{2}$,$\displaystyle y=\sqrt{\cos t}\sin \frac{t}{2}$と表される.

(1)$\displaystyle 0<t<\frac{\pi}{2}$において,$\displaystyle \frac{dx}{dt}$および$\displaystyle \frac{dy}{dt}$を求めよ.
(2)$x,\ y$の$t$に関する増減を調べ,曲線$C$の概形をかけ.
(3)曲線$C$と$x$軸で囲まれた図形の面積$S$を求めよ.
琉球大学 国立 琉球大学 2013年 第2問
$xy$平面上の曲線$C$は媒介変数$\theta$を用いて
\[ x=\frac{2}{3}\sqrt{3}\cos \theta+\frac{\sqrt{6}}{3}\sin \theta,\quad y=\frac{\sqrt{3}}{3}\cos \theta-\frac{\sqrt{6}}{3}\sin \theta \quad (0 \leqq \theta \leqq \pi) \]
と表される.このとき,次の問いに答えよ.

(1)曲線$C$を表す$x$と$y$の関係式を求め,$xy$平面に図示せよ.
(2)点$(2,\ 0)$から曲線$C$に引いた接線の方程式と接点の座標を求めよ.
群馬大学 国立 群馬大学 2013年 第16問
座標平面上に原点$\mathrm{O}$,点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(2 \sqrt{2},\ 0)$がある.$0<t<1$のとき,線分$\mathrm{AO}$,$\mathrm{OB}$を$t:1-t$に内分する点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とし,線分$\mathrm{PQ}$を$t:1-t$に内分する点を$\mathrm{R}$とする.また,$t=0$,$t=1$のとき,$\mathrm{R}$はそれぞれ$\mathrm{A}$,$\mathrm{B}$に一致するものとし,$t$を$0 \leqq t \leqq 1$の範囲で動かしたときの$\mathrm{R}$の軌跡を$C$とする.

(1)$C$を媒介変数$t$を用いて表せ.
(2)点$\mathrm{R}$と原点$\mathrm{O}$の距離の最小値を求めよ.
(3)$C$と線分$\mathrm{AB}$で囲まれた部分の面積$S$を求めよ.
島根大学 国立 島根大学 2013年 第1問
次の問いに答えよ.

(1)異なる$2$点$(-3,\ -3)$,$(a,\ b)$を通る直線の方程式を求めよ.ただし,$a,\ b$は実数とする.
(2)媒介変数表示$\left\{ \begin{array}{l}
x=2 \cos t \\
y=-\sin^2 t
\end{array} \right.$で表される曲線の概形をかけ.
(3)関数$\displaystyle f(t)=\frac{-\sin^2 t+3}{2\cos t+3}$の最大値および最小値を求めよ.
群馬大学 国立 群馬大学 2013年 第15問
原点$\mathrm{O}$を中心とする半径$2$の円を$\mathrm{A}$とする.半径$1$の円(以下,「動円」と呼ぶ)は,円$\mathrm{A}$に外接しながら,すべることなく転がる.ただし,動円の中心は円$\mathrm{A}$の中心に関し反時計回りに動く.動円上の点$\mathrm{P}$の始めの位置を$(2,\ 0)$とする.動円の中心と原点を結ぶ線分が$x$軸の正方向となす角を$\theta$として,$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で動かしたときの$\mathrm{P}$の軌跡を$C$とする.
(図は省略)

(1)$C$を媒介変数$\theta$を用いて表せ.
(2)$\mathrm{P}$の$y$座標が$\displaystyle \frac{1}{2}$のとき,$\mathrm{P}$での$C$の接線の傾きを求めよ.
(3)$C$の長さを求めよ.ただし,曲線$x=f(\theta),\ y=g(\theta) \ (\alpha \leqq \theta \leqq \beta)$の長さは \\
$\displaystyle \int_\alpha^\beta \sqrt{\left( \frac{dx}{d\theta} \right)^2+\left( \frac{dy}{d\theta} \right)^2} \, d\theta$で与えられる.
島根大学 国立 島根大学 2013年 第3問
次の問いに答えよ.

(1)異なる$2$点$(-3,\ -3)$,$(a,\ b)$を通る直線の方程式を求めよ.ただし,$a,\ b$は実数とする.
(2)媒介変数表示$\left\{ \begin{array}{l}
x=2 \cos t \\
y=-\sin^2 t
\end{array} \right.$で表される曲線の概形をかけ.
(3)関数$\displaystyle f(t)=\frac{-\sin^2 t+3}{2\cos t+3}$の最大値および最小値を求めよ.
東京都市大学 私立 東京都市大学 2013年 第1問
次の問に答えよ.

(1)$\left( \begin{array}{cc}
1+a & 1 \\
4 & 3+3a
\end{array} \right)$が逆行列をもたないような$a$の値をすべて求めよ.
(2)$xy$平面上の曲線$y=\sqrt{x-1}+1$と直線$y=x-6$の交点の座標を求めよ.
(3)媒介変数表示
\[ \left\{ \begin{array}{l}
x=4 \cos^2 \theta \\
y=4 \cos \theta \sin \theta
\end{array} \right. \]
の表す円の方程式,および中心の座標と半径を求めよ.
金沢工業大学 私立 金沢工業大学 2013年 第6問
座標平面において,媒介変数$t$の範囲が$0 \leqq t \leqq \pi$であるサイクロイド
\[ x=t-\sin t,\quad y=1-\cos t \]
を$C$とする.

(1)曲線$C$上で$y$座標が最大になる点を$\mathrm{A}$とすると,$\mathrm{A}$の座標は$([ア],\ [イ])$である.
(2)直線$y=x+k$がこの曲線$C$の$0<t \leqq \pi$の部分に接するのは$\displaystyle t=\frac{\pi}{[ウ]}$のときであり,その接点の座標は$\displaystyle \left( \frac{\pi}{[エ]}-[オ],\ [カ] \right)$である.このとき,$\displaystyle k=[キ]-\frac{\pi}{[ク]}$である.
(3)曲線$C$と$x$軸,および点$\mathrm{A}$を通り$y$軸に平行な直線$\ell$で囲まれた図形の面積は$\displaystyle \frac{[ケ]}{[コ]} \pi$である.
(4)$(2)$の接線,$x$軸および直線$\ell$とで囲まれた図形から$(3)$の図形を除いた部分の面積は$\displaystyle \frac{\pi^2}{[サ]}-\frac{\pi}{[シ]}+[ス]$である.
スポンサーリンク

「媒介変数」とは・・・

 まだこのタグの説明は執筆されていません。