タグ「始め」の検索結果

1ページ目:全9問中1問~10問を表示)
名古屋大学 国立 名古屋大学 2016年 第3問
玉が$2$個ずつ入った$2$つの袋$\mathrm{A}$,$\mathrm{B}$があるとき,袋$\mathrm{B}$から玉を$1$個取り出して袋$\mathrm{A}$に入れ,次に袋$\mathrm{A}$から玉を$1$個取り出して袋$\mathrm{B}$に入れる,という操作を$1$回の操作と数えることにする.$\mathrm{A}$に赤玉が$2$個,$\mathrm{B}$に白玉が$2$個入った状態から始め,この操作を$n$回繰り返した後に袋$\mathrm{B}$に入っている赤玉の個数が$k$個である確率を$P_n(k) (n=1,\ 2,\ 3,\ \cdots)$とする.このとき,次の問に答えよ.

(1)$k=0,\ 1,\ 2$に対する$P_1(k)$を求めよ.
(2)$k=0,\ 1,\ 2$に対する$P_n(k)$を求めよ.
京都大学 国立 京都大学 2015年 第6問
$2$つの関数を
\[ f_0(x)=\frac{x}{2},\quad f_1(x)=\frac{x+1}{2} \]
とおく.$\displaystyle x_0=\frac{1}{2}$から始め,各$n=1,\ 2,\ \cdots$について,それぞれ確率$\displaystyle \frac{1}{2}$で$x_n=f_0(x_{n-1})$または$x_n=f_1(x_{n-1})$と定める.このとき,$\displaystyle x_n<\frac{2}{3}$となる確率$P_n$を求めよ.
名古屋大学 国立 名古屋大学 2015年 第2問
数直線上にある$1,\ 2,\ 3,\ 4,\ 5$の$5$つの点と$1$つの石を考える.石がいずれかの点にあるとき,
\[ \left\{ \begin{array}{l}
\text{石が点$1$にあるならば,確率$1$で点$2$に移動する} \\
\text{石が点$k (k=2,\ 3,\ 4)$にあるならば,確率$\displaystyle \frac{1}{2}$で点$k-1$に,} \\
\text{確率$\displaystyle \frac{1}{2}$で点$k+1$に移動する} \\
\text{石が点$5$にあるならば,確率$1$で点$4$に移動する}
\end{array} \right. \]
という試行を行う.石が点$1$にある状態から始め,この試行を繰り返す.試行を$n$回繰り返した後に,石が点$k (k=1,\ 2,\ 3,\ 4,\ 5)$にある確率を$P_n(k)$とするとき,次の問に答えよ.

(1)$n=6$のときの確率$P_6(k) (k=1,\ 2,\ 3,\ 4,\ 5)$をそれぞれ求めよ.
(2)石が移動した先の点に印をつける(点$1$には初めから印がついているものとする).試行を$6$回繰り返した後に,$5$つの点全てに印がついている確率を求めよ.
(3)$n \geqq 1$のとき,$P_n(3)$を求めよ.
名古屋大学 国立 名古屋大学 2015年 第4問
数直線上にある$1,\ 2,\ 3,\ 4,\ 5$の$5$つの点と$1$つの石を考える.石がいずれかの点にあるとき,
\[ \left\{ \begin{array}{l}
\text{石が点$1$にあるならば,確率$1$で点$2$に移動する} \\
\text{石が点$k (k=2,\ 3,\ 4)$にあるならば,確率$\displaystyle \frac{1}{2}$で点$k-1$に,} \\
\text{確率$\displaystyle \frac{1}{2}$で点$k+1$に移動する} \\
\text{石が点$5$にあるならば,確率$1$で点$4$に移動する}
\end{array} \right. \]
という試行を行う.石が点$1$にある状態から始め,この試行を繰り返す.また,石が移動した先の点に印をつけていく(点$1$には初めから印がついているものとする).このとき,次の問に答えよ.

(1)試行を$6$回繰り返した後に,石が点$k (k=1,\ 2,\ 3,\ 4,\ 5)$にある確率をそれぞれ求めよ.
(2)試行を$6$回繰り返した後に,$5$つの点全てに印がついている確率を求めよ.
(3)試行を$n$回($n \geqq 1$)繰り返した後に,ちょうど$3$つの点に印がついている確率を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

数直線上の点の集合$S=\{-1,\ 0,\ 1\}$を考える.球が$2$個用意されており,$S$の各点上には,$2$個まで球を置くことができるとする.$S$内に置かれた球に対する次の操作$\mathrm{T}$を考える.
\begin{screen}
{\bf 操作$\mathrm{T}$}

\mon[$(\mathrm{T}1)$] $S$内に球が$1$個だけ置かれている場合は, その球に対して次の操作$\mathrm{A}$を行う.
\begin{screen}
{\bf 操作$\mathrm{A}$}

\mon[$(\mathrm{A}1)$] 球が点$0$上に置かれている場合はその球を確率$\displaystyle\frac{1}{3}$で$S$内から取り除き,確率$\displaystyle\frac{1}{3}$ずつで点$-1$または点$1$の上に移す.
\mon[$(\mathrm{A}2)$] 球が点$-1$または点$1$の上に置かれている場合はその球を必ず点$0$の上に移す.

\end{screen}
\mon[$(\mathrm{T}2)$] $S$内に球が$2$個置かれている場合は,どちらか$1$個の球を等しい確率で選び,その選ばれた球に対して操作$\mathrm{A}$を行う.

\end{screen}
いま,球が$2$個とも点$0$上に置かれている状態から始め,操作$\mathrm{T}$を繰り返し行う.ただし,$S$内に球がなくなった場合は操作を行うのをやめる.以下,$n,\ m$を自然数とする.

(1)操作$\mathrm{T}$を$n$回繰り返し終えたとき,球が$2$個とも点$0$上に置かれている確率を$p_n$とし,点$-1$と点$0$の上に$1$個ずつ置かれているかまたは点$0$と点$1$の上に$1$個ずつ置かれている確率を$q_n$とする.

\mon[$(1$-$1)$] $n \geqq 2$に対し,$p_n=[あ]q_{n-1}$である.
\mon[$(1$-$2)$] $q_1=[い]$である.一般に$q_{2m}=0$であり,$q_{2m-1}$を$m$の式で表すと$q_{2m-1}=[う]$である.

(2)操作$\mathrm{T}$を$n$回繰り返し終えたとき,$S$内に球が$1$個だけあり,かつそれが点$0$上に置かれている確率を$r_n$,点$-1$または点$1$の上に置かれている確率を$s_n$とする.

\mon[$(2$-$1)$] $n \geqq 2$に対し,
\[ \begin{array}{l}
r_n=[え]s_{n-1}+[お]p_{n-1} \\
s_n=[か]r_{n-1}+[き]q_{n-1}
\end{array} \]
である.
\mon[$(2$-$2)$] 一般に$r_{2m}=0$であり,$r_{2m-1}$を$m$の式で表すと$r_{2m-1}=[く]$である.
群馬大学 国立 群馬大学 2013年 第15問
原点$\mathrm{O}$を中心とする半径$2$の円を$\mathrm{A}$とする.半径$1$の円(以下,「動円」と呼ぶ)は,円$\mathrm{A}$に外接しながら,すべることなく転がる.ただし,動円の中心は円$\mathrm{A}$の中心に関し反時計回りに動く.動円上の点$\mathrm{P}$の始めの位置を$(2,\ 0)$とする.動円の中心と原点を結ぶ線分が$x$軸の正方向となす角を$\theta$として,$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で動かしたときの$\mathrm{P}$の軌跡を$C$とする.
(図は省略)

(1)$C$を媒介変数$\theta$を用いて表せ.
(2)$\mathrm{P}$の$y$座標が$\displaystyle \frac{1}{2}$のとき,$\mathrm{P}$での$C$の接線の傾きを求めよ.
(3)$C$の長さを求めよ.ただし,曲線$x=f(\theta),\ y=g(\theta) \ (\alpha \leqq \theta \leqq \beta)$の長さは \\
$\displaystyle \int_\alpha^\beta \sqrt{\left( \frac{dx}{d\theta} \right)^2+\left( \frac{dy}{d\theta} \right)^2} \, d\theta$で与えられる.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$xy$平面上で点$\mathrm{P}$は$x$軸上に,点$\mathrm{Q}$は$y$軸上に置かれ,点$\mathrm{P}$の$x$座標と点$\mathrm{Q}$の$y$座標はそれぞれ$-2$以上$2$以下の整数であるとする.点$\mathrm{P}$,$\mathrm{Q}$に対して次の操作を考える.
\begin{screen}
{\bf 操作} \\
点$\mathrm{P}$の座標が$(i,\ 0)$,点$\mathrm{Q}$の座標が$(0,\ j)$であるとき次の規則に従って$2$点$\mathrm{P}$,$\mathrm{Q}$を互いに独立に同時に処理する.

\mon[$(\mathrm{P}1)$] $-1 \leqq i \leqq 1$ならば点$\mathrm{P}$を$(i+1,\ 0)$または$(i-1,\ 0)$のどちらかに確率$\displaystyle \frac{1}{2}$ずつで移す.
\mon[$(\mathrm{P}2)$] $i=-2$ならば点$\mathrm{P}$を必ず$(-1,\ 0)$に移す.
\mon[$(\mathrm{P}3)$] $i=2$ならば点$\mathrm{P}$をそのままにしておく.
\mon[$(\mathrm{Q}1)$] $-1 \leqq j \leqq 1$ならば点$\mathrm{Q}$を$(0,\ j+1)$または$(0,\ j-1)$のどちらかに確率$\displaystyle \frac{1}{2}$ずつで移す.
\mon[$(\mathrm{Q}2)$] $j=-2$ならば点$\mathrm{Q}$を必ず$(0,\ -1)$に移す.
\mon[$(\mathrm{Q}3)$] $j=2$ならば点$\mathrm{Q}$をそのままにしておく.

\end{screen}
さて,$2$点$\mathrm{P}$,$\mathrm{Q}$がともに$(0,\ 0)$に置かれている状態から始め,上の操作を$3$回繰り返し行う.

(1)$3$回の操作の後,点$\mathrm{P}$が$(1,\ 0)$に置かれている確率は$[あ]$であり,$(-1,\ 0)$に置かれている確率は$[い]$である.
(2)$xy$平面上で不等式$y>x$の表す領域を$A$,不等式$y>-x$の表す領域を$B$とする.各回の操作後に点$\mathrm{P}$が常に$A \cup B$内に置かれているという事象を$U$とし,各回の操作後に点$\mathrm{Q}$が常に$A \cup B$内に置かれているという事象を$V$とすると,事象$U \cup V$の確率は$[う]$である.
$xy$平面上で$2$点$\mathrm{P}$,$\mathrm{Q}$を結ぶ線分の長さを$\mathrm{PQ}$とする.ただし$2$点$\mathrm{P}$,$\mathrm{Q}$がともに$(0,\ 0)$に置かれている場合は$\mathrm{PQ}=0$とする.
(3)$3$回の操作を通じてちょうど$1$回だけ$\mathrm{PQ}=\sqrt{2}$となる確率は$[え]$である.
(4)$3$回の操作を通じた$\mathrm{PQ}$の最大値の期待値は$[お]$である.
上智大学 私立 上智大学 2011年 第3問
ボタンを押すと,$0$と$1$のどちらか一方の数字を表示する機械がある.ボタンを連続して押すとき,直前に表示された数字と同じ数字が再び表示される確率は$\displaystyle \frac{2}{3}$,違う数字の表示される確率は$\displaystyle \frac{1}{3}$である.ただし,始めにボタンを押すときには,$0$と$1$が表示される確率は等しい.

(1)$4$回連続してボタンを押すとき,$4$回とも同じ数字が表示される確率は$\displaystyle \frac{[ヒ]}{[フ]}$である.また,$4$回目に表示された数字が$1$である確率は$\displaystyle \frac{[ヘ]}{[ホ]}$である.
(2)$4$回連続してボタンを押すときに表示される数字の合計が$1$である確率は$\displaystyle \frac{[マ]}{[ミ]}$である.また,合計が$2$である確率は$\displaystyle \frac{[ム]}{[メ]}$である.
(3)始めに表示された数字が$1$のとき,さらに$4$回連続してボタンを押して表示される$4$つの数字の合計が$2$である確率は$\displaystyle \frac{[モ]}{[ヤ]}$である.
横浜国立大学 国立 横浜国立大学 2010年 第3問
$xy$平面上の点Aを次のルール($*$)に従って動かす試行を繰り返す.
\[ (*) \left\{
\begin{array}{l}
1 \text{個のさいころを投げ,} \\
(\text{A}) \; \text{1または2の目が出たとき,} \ x \text{軸の正の方向に1動かす.} \\
(\text{B}) \; \text{3または4の目が出たとき,} \ y \text{軸の正の方向に1動かす.} \\
(\text{C}) \; \text{5または6の目が出たとき,動かさない.}
\end{array}
\right. \]
Aは始め原点Oにある.直線$x+y=3$を$\ell$として,次の問いに答えよ.

(1)5回の試行後,Aが$(2,\ 1)$にある確率を求めよ.
(2)$n \geqq 3$に対し,$n$回の試行後,Aが$\ell$上にある確率を求めよ.
(3)Aが$\ell$上に来たとき,または(C)が合計2回生じたとき,試行を終了する.

(4)Aが$\ell$上に来て試行が終了する確率を求めよ.
(5)終了までの試行回数の期待値を求めよ.
スポンサーリンク

「始め」とは・・・

 まだこのタグの説明は執筆されていません。