タグ「多項式」の検索結果

7ページ目:全84問中61問~70問を表示)
大阪府立大学 公立 大阪府立大学 2012年 第4問
$a$を正の定数とする.実数の変数$x$の関数$f(x)=(x+a)e^{2x^2}$について,以下の問いに答えよ.

(1)一階導関数$f^\prime(x)$はある多項式$g(x)$により$f^\prime(x)=g(x)e^{2x^2}$と表され,二階導関数$f^{\prime\prime}(x)$はある多項式$h(x)$により$f^{\prime\prime}(x)=h(x)e^{2x^2}$と表される.$g(x),\ h(x)$を求めよ.
(2)関数$f(x)$が極大値と極小値をもつための$a$の値の範囲を求めよ.
(3)$a$が(2)で求めた範囲にあるとする.関数$f(x)$が極大値をとる$x$の値を$\alpha$とし,極小値をとる$x$の値を$\beta$とする.このとき,$f^{\prime\prime}(\gamma)=0$となる$\gamma$が$\alpha$と$\beta$の間に存在することを示せ.
横浜市立大学 公立 横浜市立大学 2012年 第1問
以下の問いに答えよ.

(1)$a$を正の定数として,関数$f(x)$を$f(x)=\log (\sqrt{a^2+x^2}-x)$とおく.$f(x)$を微分して,多項式
\[ f(0)+f^\prime(0)x+\frac{f^{\prime\prime}(0)}{2!}x^2+\frac{f^{\prime\prime\prime}(0)}{3!}x^3 \]
を求めよ.
(2)座標平面において,曲線$\displaystyle C:y=\sin x \left( 0<x<\frac{\pi}{2} \right)$上の点$\mathrm{P}(a,\ \sin a)$における$C$の法線が$x$軸と交わる点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$を直径とする円が,$x$軸と交わる$\mathrm{Q}$以外の点を$\mathrm{R}$とする.このとき,三角形$\mathrm{PQR}$の面積$S(a)$を求めよ.次に,$a$が動くとき,$S(a)$の最大値を求めよ.
(図は省略)
(3)数列$\{a_n\}$
\[ 1,\ \frac{1}{2},\ \frac{2}{1},\ \frac{1}{3},\ \frac{2}{2},\ \frac{3}{1},\ \frac{1}{4},\ \frac{2}{3},\ \frac{3}{2},\ \frac{4}{1},\ \cdots \]
を次のような群に分け,第$m$群には$m$個の数が入るようにする.
$\displaystyle \sitabrace{\frac{1}{1}}_{第1群} \ \bigg| \ \sitabrace{\frac{1}{2},\ \frac{2}{1}}_{第2群} \ \bigg| \ \sitabrace{\frac{1}{3},\ \frac{2}{2},\ \frac{3}{1}}_{第3群} \ \bigg| \ \sitabrace{\frac{1}{4},\ \frac{2}{3},\ \frac{3}{2},\ \frac{4}{1}}_{第4群} \ \bigg| \ ,\ \cdots ,\ $

$\displaystyle \bigg| \ \sitabrace{\frac{1}{m},\ \frac{2}{m-1},\ \cdots ,\ \frac{m-1}{2},\ \frac{m}{1}}_{第m群} \ \bigg| \ ,\ \cdots$
このとき,数列$\{a_n\}$において,$\displaystyle \frac{q}{p}$は第何項か.ただし,$\displaystyle \frac{q}{p}$は,例えば$\displaystyle \frac{2}{4}=\frac{1}{2}$のように,約分しないものとする.次に,第$100$項$a_{100}$を求めよ.
(4)$2$次の正方行列$A$が
\[ A \left( \begin{array}{c}
3 \\
2
\end{array} \right)=\left( \begin{array}{c}
1 \\
1
\end{array} \right),\quad A \left( \begin{array}{c}
1 \\
1
\end{array} \right)=\left( \begin{array}{c}
3 \\
2
\end{array} \right) \]
をみたすとする.このとき,自然数$n$に対して$A^n \left( \begin{array}{c}
5 \\
3
\end{array} \right)$を求めよ.
(5)$\mathrm{AB}=\mathrm{AC}$,$\mathrm{BC}$の長さが$1$,$\angle \mathrm{A}$が$\displaystyle \frac{\pi}{5}$の二等辺三角形$\mathrm{ABC}$を考える.頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$から$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の二等分線を引き,対応する辺との交点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.このとき,三角関数の値
\[ \sin \left( \frac{\pi}{10} \right) \]
を求めよ.
(図は省略)
佐賀大学 国立 佐賀大学 2011年 第2問
多項式$f(x)=x^4-x^3+cx^2-11x+d$について,$f(1+\sqrt{2})=0$が成り立つとする.ここで,$c,\ d$は有理数とする.次の問いに答えよ.

(1)$S=\{a+\sqrt{2}b \;|\; a,\ b \text{は有理数} \}$とする.集合$S$の元$z=a+\sqrt{2}b \ $(ただし,$a,\ b$は有理数)に対して,$j(z)=a-\sqrt{2}b$と定義する.$S$の任意の元$z,\ w$に対して,$j(z+w)=j(z)+j(w)$および$j(zw)=j(z)j(w)$が成り立つことを示せ.
(2)(1)を用いて,$S$の元$z$が$f(z)=0$を満たせば,$f(j(z))=0$が成り立つことを示せ.このことを用いて,$f(1-\sqrt{2})=0$を示せ.
(3)有理数$c,\ d$を求め,$f(x)$を有理数の範囲で因数分解せよ.
佐賀大学 国立 佐賀大学 2011年 第2問
多項式$f(x)=x^4-x^3+cx^2-11x+d$について,$f(1+\sqrt{2})=0$が成り立つとする.ここで,$c,\ d$は有理数とする.次の問いに答えよ.

(1)$S=\{a+\sqrt{2}b \;|\; a,\ b \text{は有理数} \}$とする.集合$S$の元$z=a+\sqrt{2}b \ $(ただし,$a,\ b$は有理数)に対して,$j(z)=a-\sqrt{2}b$と定義する.$S$の任意の元$z,\ w$に対して,$j(z+w)=j(z)+j(w)$および$j(zw)=j(z)j(w)$が成り立つことを示せ.
(2)(1)を用いて,$S$の元$z$が$f(z)=0$を満たせば,$f(j(z))=0$が成り立つことを示せ.このことを用いて,$f(1-\sqrt{2})=0$を示せ.
(3)有理数$c,\ d$を求め,$f(x)$を有理数の範囲で因数分解せよ.
お茶の水女子大学 国立 お茶の水女子大学 2011年 第3問
$x$の多項式$f(x)$は
\[ \int_{-1}^1 xf(x) \, dx=0,\quad f(1)=f(-1)=0 \]
を満たしているとする.

(1)このとき$\displaystyle \int_{-1}^1 x^2f^\prime(x) \, dx=0$を示せ.
(2)さらに多項式$f(x)$は3次以下で$\displaystyle \int_{-1}^1 f(x)e^x \, dx=1$を満たしているとする.このような$f(x)$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第3問
$1$回投げて表が出る確率$p$,裏が出る確率$1-p$のコインが$1$枚ある.このコインを$1$日に$4$回投げる試行を$\mathrm{T}$とする.このとき,次の各問に答えよ.

(1)試行$\mathrm{T}$において,$2$回以上表が出る確率$A$を,$p$の多項式として降べきの順に表せ.
(2)試行$\mathrm{T}$を$5$日続ける試行を$\mathrm{S}$とする.

(3)試行$\mathrm{S}$において,$5$日間の中でちょうど$3$日だけ$1$日に$2$回以上表が出て,かつ,$2$日以上連続して$1$日に$2$回以上表が出る確率を,$A$を用いて表せ.
(4)試行$\mathrm{S}$において,$2$日以上連続して$1$日に$2$回以上表が出る確率を,$A$の多項式として降べきの順に表せ.
甲南大学 私立 甲南大学 2011年 第3問
$a$は実数とする.多項式$f(x),\ g(x)$が
\[ f(x)=ax^2+x+\int_0^1 g(t) \, dt,\quad g(x)=-x^2+2x+\int_{-1}^1 f(t) \, dt \]
を満たすとき,以下の問いに答えよ.

(1)$\displaystyle \int_0^1 g(t) \, dt,\ \int_{-1}^1 f(t) \, dt$の値を$a$を用いて表せ.
(2)方程式$f(x)=g(x)$が実数解をもつときの$a$の値の範囲を求めよ.
(3)$\displaystyle g \left( \frac{2}{3} \right)=0$のとき,$2$つの関数$y=f(x)$,$y=g(x)$のグラフで囲まれる部分の面積を求めよ.
上智大学 私立 上智大学 2011年 第4問
実数$x$に対し,$x$を超えない最大の整数を$[x]$で表す.

自然数$n=1,\ 2,\ 3,\ \cdots$に対して,$n$が$[\sqrt{n}]$の整数倍で表せるとき,そのような$n$を小さいものから順に並べて
\[ n_1,\ n_2,\ n_3,\ \cdots \]
とする.

(1)$n_5=[マ]$である.
(2)自然数$p$に対して,$[\sqrt{n}]=p$をみたす自然数$n$の集合を$M_p$とする.$M_p$の要素で$p$の整数倍であるものは全部で$[ミ]$個ある.
(3)自然数$m$に対して,
\[ S_m=\sum_{i=1}^m n_i \]
とおく.$k \geqq 1$のとき,$S_{3k-2}$,$S_{3k-1}$,$S_{3k}$はいずれも$k$の多項式で,それぞれの$k$の$1$次の項の係数は$S_{3k-2}$,$S_{3k-1}$,$S_{3k}$の順に$[ム]$,$[メ]$,$[モ]$である.また,$S_{3k-2}$,$S_{3k-1}$,$S_{3k}$は共通の因数$\displaystyle \left( k+[ヤ] \right)$をもつ.

(4)$\displaystyle \lim_{m \to \infty} \frac{\sqrt[3]{S_m}}{m}=\frac{[ユ]}{[ヨ]}$である.
広島修道大学 私立 広島修道大学 2011年 第3問
$k$を定数とし,関数$f(x)=x^3+3x^2+3kx-4$は,$x=\alpha$で極大値をとり,$x=\beta$で極小値をとるとする.また,$x$についての多項式$f(x)$を$x$についての多項式$f^\prime(x)$で割った余りを$R(x)$とするとき,次の各問に答えよ.

(1)余り$R(x)$を求めよ.
(2)$f(\alpha)=R(\alpha)$であることを示せ.
(3)極大値と極小値の和が$0$となるような$k$の値を求めよ.
広島修道大学 私立 広島修道大学 2011年 第3問
$k$を定数とし,関数$f(x)=x^3+3x^2+3kx-4$は,$x=\alpha$で極大値をとり,$x=\beta$で極小値をとるとする.また,$x$についての多項式$f(x)$を$x$についての多項式$f^\prime(x)$で割った余りを$R(x)$とするとき,次の各問に答えよ.

(1)余り$R(x)$を求めよ.
(2)$f(\alpha)=R(\alpha)$であることを示せ.
(3)極大値と極小値の和が$0$となるような$k$の値を求めよ.
スポンサーリンク

「多項式」とは・・・

 まだこのタグの説明は執筆されていません。