タグ「多項式」の検索結果

4ページ目:全84問中31問~40問を表示)
信州大学 国立 信州大学 2013年 第2問
$0 \leqq t \leqq 1$とする.関数$\displaystyle f(t)=\int_0^1 |\sqrt{x|-t} \, dx+t^2$について,次の問いに答えよ.

(1)$f(t)$を$t$の多項式で表せ.
(2)$f(t)$の最小値を求めよ.
神戸大学 国立 神戸大学 2013年 第3問
$c$を$0<c<1$をみたす実数とする.$f(x)$を$2$次以下の多項式とし,曲線$y=f(x)$が$3$点$(0,\ 0)$,$(c,\ c^3-2c)$,$(1,\ -1)$を通るとする.次の問いに答えよ.

(1)$f(x)$を求めよ.
(2)曲線$y=f(x)$と曲線$y=x^3-2x$で囲まれた部分の面積$S$を$c$を用いて表せ.
(3)$(2)$で求めた$S$を最小にするような$c$の値を求めよ.
秋田大学 国立 秋田大学 2013年 第1問
次の問いに答えよ.

(1)$2$次方程式$x^2-2ax+2a+3=0$が異なる$2$つの実数解をもち,その$2$つの実数解がともに$1$以上$5$以下であるように,定数$a$の値の範囲を定めよ.
(2)多項式$4x^4+7x^2+16$を因数分解せよ.
愛媛大学 国立 愛媛大学 2013年 第1問
次の問いに答えよ.

(1)$\theta$が方程式$\displaystyle \cos 2 \theta-2 \sin \theta=\frac{1}{2}$を満たすとき,$\sin \theta$の値を求めよ.
(2)不等式$\log_{\frac{1}{2}}(2-x)<\log_{\frac{1}{4}}(2-x)$を解け.
(3)$x$の多項式$x^4-px+q$が$(x-1)^2$で割り切れるとき,定数$p,\ q$の値を求めよ.
(4)空間内に$5$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$があり,次の等式を満たしている.
\[ \overrightarrow{\mathrm{EA}}+\overrightarrow{\mathrm{EB}}+\overrightarrow{\mathrm{EC}}+\overrightarrow{\mathrm{ED}}=\overrightarrow{\mathrm{0}},\quad \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{CD}} \]
$\overrightarrow{\mathrm{EB}}$を$\overrightarrow{\mathrm{EA}}$と$\overrightarrow{\mathrm{EC}}$を用いて表せ.ただし,$\overrightarrow{\mathrm{0}}$は零ベクトルである.
電気通信大学 国立 電気通信大学 2013年 第3問
以下の問いに答えよ.

(1)自然数$n$に対して,
\[ (\cos \theta+i \sin \theta)^n=\cos (n \theta)+i \sin (n \theta) \]
が成り立つことを$n$に関する数学的帰納法により証明せよ.ただし,$i$は虚数単位とする.
(2)$\cos (n \theta)=0$をみたすような$\theta$をすべて求めよ.
(3)$t=\cos \theta$とする.(1)の等式を使って,$\cos 5 \theta=f(t)$をみたす多項式$f(t)$を求めよ.
(4)$f(t)=0$のすべての解を$\cos \alpha \ (0 \leqq \alpha \leqq \pi)$の形で表せ.また,それらを大きい順に並べよ.
(5)$\displaystyle \cos \frac{3}{10}\pi$を求めよ.
京都教育大学 国立 京都教育大学 2013年 第5問
百の位が$a$,十の位が$b$,一の位が$c$である$1$以上$999$以下の整数がある.ただし,この整数が$99$以下のときは百の位が$0$であるとみなし,さらに$9$以下のときは十の位も$0$であるとみなす.この整数が各位の数の和の$3$乗に等しいとき次の問に答えよ.

(1)$(a+b+c)^3-(a+b+c)$は$9$の倍数であることを証明せよ.
(2)多項式$(x+y+z)^3-(x+y+z)$を因数分解せよ.
(3)このような整数をすべて求めよ.
愛媛大学 国立 愛媛大学 2013年 第2問
次の問いに答えよ.

(1)$i$を虚数単位とする.等式$(1+i)^{14}=a+bi$を満たす実数$a,\ b$の値を求めよ.
(2)$x$の多項式$x^4-px+q$が$(x-1)^2$で割り切れるとき,定数$p,\ q$の値を求めよ.
(3)$\theta$が方程式$\displaystyle \cos 2\theta-2 \sin \theta=\frac{47}{50}$を満たすとき,$\sin \theta$の値を求めよ.
(4)次の極限値を求めよ.
\[ \lim_{x \to 0}\frac{(\sqrt{x^2+x+4}-\sqrt{x^2+4}) \sin 2x}{x^2} \]
(5)空間内に$5$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$があり,次の等式を満たしている.
\[ \overrightarrow{\mathrm{EA}}+\overrightarrow{\mathrm{EB}}+\overrightarrow{\mathrm{EC}}+\overrightarrow{\mathrm{ED}}=\overrightarrow{\mathrm{0}},\quad \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{CD}} \]
$\overrightarrow{\mathrm{EB}}$を$\overrightarrow{\mathrm{EA}}$と$\overrightarrow{\mathrm{EC}}$を用いて表せ.ただし,$\overrightarrow{\mathrm{0}}$は零ベクトルである.
名城大学 私立 名城大学 2013年 第1問
次の$[ ]$に適切な答えを入れよ.

(1)$f(x)$は$x$の$n$次の多項式で,$f^\prime(x) f^{\prime\prime}(x)=f(x)$および$\displaystyle f^{\prime\prime}(0)=\frac{1}{2}$を満たすとする.このとき$n=[ア]$であり,$f(0)=[イ]$である.
(2)さいころを$3$回投げ,出た目の最大値を$X$とする.このとき,$X=3$となる確率は$[ウ]$であり,$X$の平均は$[エ]$である.
京都産業大学 私立 京都産業大学 2013年 第1問
以下の$[ ]$にあてはまる式または数値を入れよ.

(1)多項式$2x^3-3x^2+2x-8$を$2x^2-1$で割った余りは$[ ]$である.
(2)不等式$\displaystyle \sqrt{2x-1}<\frac{1}{2}(x+1)$を満たす$x$の値の範囲は$[ ]$である.
(3)$\displaystyle a_1=1,\ \frac{1}{a_{n+1}}=\frac{1}{a_n}+1 (n=1,\ 2,\ 3,\ \cdots)$で定義される数列$\{a_n\}$の一般項は$[ ]$である.
(4)不等式$\displaystyle \left( \frac{1}{2} \right)^{2x}>\frac{1}{2} \left( \frac{1}{16} \right)^{x}$を満たす$x$の値の範囲は$[ ]$である.

(5)$\left( \begin{array}{cc}
2 & 1 \\
4 & 2
\end{array} \right) \left( \begin{array}{rr}
a & 3 \\
-2 & b
\end{array} \right)=O$が成り立つとき,$a,\ b$の値は$(a,\ b)=[ ]$である.ただし,$O$は$2$次の零行列である.
広島修道大学 私立 広島修道大学 2013年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)方程式$2x^2+3x-4=0$の解は$[$1$]$である.
(2)$a,\ b$を定数とし,$a>0$とする.$1$次関数$y=ax+b (-1 \leqq x \leqq 5)$の値域が$-2 \leqq y \leqq 2$であるとき,$a,\ b$の値は$a=[$2$]$,$b=[$3$]$である.
(3)放物線$y=x^2+x+2$と直線$y=ax-a$が共有点をもたないような定数$a$の値の範囲は$[$4$]$である.
(4)多項式$P(x)=x^3+ax^2+2x+5a$を$x-3$で割った余りが$5$であるとき,定数$a$の値は$[$5$]$であり,商は$[$6$]$である.
(5)半径$r$の円$x^2+y^2=r^2$と直線$4x+3y-5=0$が接するとき,$r=[$7$]$である.また,接点の座標は$[$8$]$である.
(6)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=1$,$\mathrm{BC}=\sqrt{3}$,$\mathrm{CA}=\sqrt{5}$のとき,$\cos A$の値は$[$9$]$,$\triangle \mathrm{ABC}$の面積は$[$10$]$である.また,$\triangle \mathrm{ABC}$の外接円の半径は$[$11$]$である.
スポンサーリンク

「多項式」とは・・・

 まだこのタグの説明は執筆されていません。