タグ「多項式」の検索結果

2ページ目:全84問中11問~20問を表示)
名古屋大学 国立 名古屋大学 2015年 第2問
次の問に答えよ.

(1)$\alpha=\sqrt{13}+\sqrt{9+2 \sqrt{17}}+\sqrt{9-2 \sqrt{17}}$とするとき,整数係数の$4$次多項式$f(x)$で$f(\alpha)=0$となるもののうち,$x^4$の係数が$1$であるものを求めよ.
(2)$8$つの実数
\[ \pm \sqrt{13} \pm \sqrt{9+2 \sqrt{17}} \pm \sqrt{9-2 \sqrt{17}} \]
(ただし,複号$\pm$はすべての可能性にわたる)の中で,$(1)$で求めた$f(x)$に対して方程式$f(x)=0$の解となるものをすべて求め,それ以外のものが解でないことを示せ.
(3)$(2)$で求めた$f(x)=0$の解の大小関係を調べ,それらを大きい順に並べよ.
九州工業大学 国立 九州工業大学 2015年 第2問
初項$1$,公差$3$の等差数列$\{a_n\}$と,一般項が$\displaystyle b_n=\left[ \frac{2n+2}{3} \right]$で与えられる数列$\{b_n\}$がある.ここで,実数$x$に対して$[x]$は$x$を超えない最大の整数を表す.たとえば,$\displaystyle b_1=\left[ \frac{4}{3} \right]=1$,$b_2=[2]=2$,$\displaystyle b_3=\left[ \frac{8}{3} \right]=2$である.数列$\{a_n\}$を次のように,$b_1$個,$b_2$個,$b_3$個,$\cdots$の群に分け,第$k$群には$b_k$個の数が入るようにする.

$\big| \quad a_1 \quad \big| \quad a_2,\ a_3 \quad \big| \quad a_4,\ a_5 \quad \big| \quad a_6,\ \cdots$
\ 第$1$群 \quad 第$2$群 \qquad\ 第$3$群 \qquad $\cdots$

第$k$群の最初の数を$c_k$とする.次に答えよ.

(1)自然数$m$に対して,$b_{3m-2}$,$b_{3m-1}$,$b_{3m}$をそれぞれ$m$の多項式で表せ.また,数列 $\{b_n\}$の初項から第$3m$項までの和$S_{3m}$を求めよ.
(2)自然数$m$に対して,$c_{3m-2}$,$c_{3m-1}$,$c_{3m}$をそれぞれ$m$の多項式で表せ.また,数列 $\{c_k\}$の初項から第$3m$項までの和$T_{3m}$を求めよ.
(3)$1000$は第何群の何番目の数か.
(4)$x \geqq 1$のとき$\displaystyle \sqrt{x^2+1}<x+\frac{1}{2}$であることを用いて,次の不等式が成り立つことを示せ.ただし,$m$は自然数とする.
\[ \sum_{k=1}^{3m} (\sqrt{c_k}-k)<\frac{m}{2} \]
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$a>0$とし,関数$f(x)$を
\[ f(x)=-a \cos x+\frac{1}{2}a^2 \cos 2x \qquad (-\pi<x<\pi) \]
と定める.

(1)$f(x)$の最小値は,$a \leqq [ア]$のとき$[イ]$であり,$a \geqq [ア]$のとき$[ウ]$である.ただし,$[ア]$には数,$[イ]$と$[ウ]$には$a$の多項式を記入すること.
(2)曲線$y=f(x)$が$x$軸と接するのは$a=[エ]$のときである.
(3)$a=[エ]$とする.曲線$y=f(x)$と$x$軸で囲まれた部分の面積は$[オ]$であり,その部分を$x$軸の周りに$1$回転させてできる立体の体積は$[カ]$である.
中央大学 私立 中央大学 2015年 第2問
実数の定数$a (a \neq 1)$,$b,\ c$に対し,多項式$f(x)=ax^3+2bx^2+6x+c$を考える.$f(x)$が$x=a$および$x=1$で極値を持つとき,以下の設問に答えよ.

(1)$a,\ b$の値をすべて求めよ.
(2)$f(x)$の極小値が$3a$であるとき,$c$の値を求めよ.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$にあてはまる数または式を記入せよ.

(1)空間内の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を$\mathrm{A}(0,\ 1,\ 1)$,$\mathrm{B}(1,\ 0,\ 1)$,$\mathrm{C}(2,\ 2,\ 0)$とする.実数$p,\ q$を用いて点$\mathrm{H}$を$\overrightarrow{\mathrm{AH}}=p \overrightarrow{\mathrm{AB}}+q \overrightarrow{\mathrm{AC}}$で定める.原点を$\mathrm{O}(0,\ 0,\ 0)$として,$\overrightarrow{\mathrm{OH}}$が$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$の両方に垂直であるとき,$p=[ア]$,$q=[イ]$である.
(2)不等式$x+3<5 |x-1|$を満たす実数$x$の範囲は,$x<[ウ]$または$x>[エ]$である.
(3)多項式$(x^5+1)^2$を$x^2+x+1$で割った余りを$Ax+B$とすると,定数$A$と$B$は$A=[オ]$,$B=[カ]$である.
(4)$0<a<1$のとき$\displaystyle \lim_{n \to \infty} \frac{1}{n} \log (a^{2n}+a^{3n})=[キ]$である.
(5)大中小の$3$つのサイコロをふって,出た目の和が$9$になる確率は$[ク]$である.
(6)$0 \leqq \theta \leqq \pi$のとき,$\displaystyle \int_0^{\frac{\pi}{2}} \cos (x-\theta) \, dx$の最大値は$[ケ]$であり,最小値は$[コ]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
次の$[ ]$にあてはまる最も適当な数または式を解答欄に記入しなさい.

(1)多項式$f(x)=5x^3-12x^2+8x+1$を$x-1$で割ったときの商$g(x)$は$g(x)=[ケ]$であり,余りは$[コ]$である.また,$g(x)$を$x-1$で割ったときの余りは$[サ]$である.
さらに,定数$[コ]$,$[サ]$,$[シ]$,$[ス]$を用いると,$x$についての恒等式
\[ \frac{f(x)}{(x-1)^4}=\frac{[コ]}{(x-1)^4}+\frac{[サ]}{(x-1)^3}+\frac{[シ]}{(x-1)^2}+\frac{[ス]}{x-1} \]
が成り立つ.
(2)点$\mathrm{O}$を中心とする半径$1$の円周上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が
\[ 5 \overrightarrow{\mathrm{OA}}+6 \overrightarrow{\mathrm{OB}}=-7 \overrightarrow{\mathrm{OC}} \]
を満たすとする.このとき$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=[セ]$であり,$|\overrightarrow{\mathrm{AB}}|=[ソ]$である.また$\angle \mathrm{ACB}$の大きさを$\theta ({0}^\circ \leqq \theta \leqq {180}^\circ)$とすると$\sin \theta=[タ]$である.
京都府立大学 公立 京都府立大学 2015年 第2問
$l,\ m$を$0$以上の整数とする.$n$を自然数とする.実数の数列$\{a_n\}$に対して$x$の$l$次多項式$P_m(x) (l \leqq m)$が$P_m(n)=a_n (n=1,\ 2,\ 3,\ \cdots,\ m+1)$を満たすとき,以下の問いに答えよ.

(1)$n=1,\ 2,\ 3,\ \cdots,\ m+1$のとき,$P_{m+1}(n)-P_m(n)$の値をすべて求めよ.
(2)$P_{m+1}(0)-P_m(0)={(-1)}^{m+1}(a_{m+2}-P_m(m+2))$となることを示せ.
(3)$a_1=1,\ a_2=2,\ a_3=3,\ a_4=5$のとき,$P_3(6)$の値を求めよ.
京都府立大学 公立 京都府立大学 2015年 第3問
関数$\displaystyle f(x)=\frac{4}{3}x^3+2x^2+2x+1$と関数$\displaystyle g(x)=\frac{2}{3}x^4+\frac{4}{3}x^3+2x^2+2x+1$がある.方程式$f(x)=0$の実数解を$\alpha$とするとき,以下の問いに答えよ.

(1)$-1<\alpha<0$であることを示せ.
(2)$g(x)$の最小値を$\alpha$を用いて多項式で表せ.
尾道市立大学 公立 尾道市立大学 2015年 第1問
次の問いに答えなさい.

(1)$x,\ y$の多項式$x^3y+x^2y^2+x^2y+x^2+xy^2+xy+x+y$を因数分解しなさい.
(2)$\displaystyle x=\frac{1}{\sqrt{7}+\sqrt{6}},\ y=\frac{1}{\sqrt{7}-\sqrt{6}}$のとき$(1)$の多項式$x^3y+x^2y^2+x^2y+x^2+xy^2+xy+x+y$の値を求めなさい.
(3)$a<0$とし,$2$次方程式$ax^2-(a^2+a+1)x-2a-4=0$の解を$\alpha,\ \beta (\alpha<\beta)$とする.このとき$2$つの解$\alpha,\ \beta$が$-2<\alpha<-1$かつ$-1<\beta<0$を満たすような$a$の範囲を求めなさい.
一橋大学 国立 一橋大学 2014年 第3問
円$C:x^2+y^2=1$上の点$\mathrm{P}$における接線を$\ell$とする.点$(1,\ 0)$を通り$\ell$と平行な直線を$m$とする.直線$m$と円$C$の$(1,\ 0)$以外の共有点を$\mathrm{P}^\prime$とする.ただし,$m$が直線$x=1$のときは$\mathrm{P}^\prime$を$(1,\ 0)$とする.

円$C$上の点$\mathrm{P}(s,\ t)$から点$\mathrm{P}^\prime(s^\prime,\ t^\prime)$を得る上記の操作を$\mathrm{T}$と呼ぶ.

(1)$s^\prime,\ t^\prime$をそれぞれ$s$と$t$の多項式として表せ.
(2)点$\mathrm{P}$に操作$\mathrm{T}$を$n$回繰り返して得られる点を$\mathrm{P}_n$とおく.$\mathrm{P}$が$\displaystyle \left( \frac{\sqrt{3}}{2},\ \frac{1}{2} \right)$のとき,$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$を図示せよ.
(3)正の整数$n$について,$\mathrm{P}_n=\mathrm{P}$となるような点$\mathrm{P}$の個数を求めよ.
スポンサーリンク

「多項式」とは・・・

 まだこのタグの説明は執筆されていません。