タグ「外接円」の検索結果

8ページ目:全155問中71問~80問を表示)
京都工芸繊維大学 国立 京都工芸繊維大学 2013年 第1問
一辺の長さが$1$の正十角形$D$が平面上にある.$D$の外接円を$C$とおき,$C$の中心を$\mathrm{O}$,$C$の半径を$R$とおく.$D$の頂点$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_{10}$は$C$上でこの順に反時計回りに並んでいるとする.点$\mathrm{P}_2$,$\mathrm{P}_3$から直線$\mathrm{OP}_1$へ下ろした垂線をそれぞれ$\mathrm{P}_2 \mathrm{H}_2$,$\mathrm{P}_3 \mathrm{H}_3$とする.

(1)$\displaystyle R=\frac{1}{2 \sin \theta_1}$を満たす$\theta_1 \ (0^\circ<\theta_1<90^\circ)$を求めよ.
(2)$\mathrm{P}_1 \mathrm{H}_2=\sin \theta_2$,$\mathrm{H}_2 \mathrm{H}_3=\cos \theta_3$を満たす$\theta_2,\ \theta_3 \ (0^\circ<\theta_2<90^\circ,\ 0^\circ<\theta_3<90^\circ)$を求めよ.
(3)等式$\mathrm{P}_1 \mathrm{H}_2+\mathrm{H}_2 \mathrm{H}_3+\mathrm{H}_3 \mathrm{O}=R$を用いて,$\sin 18^\circ$の値を求めよ.
(4)$D$の面積を$S$とするとき,$S^2$の値を求めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2013年 第6問
$\triangle \mathrm{ABC}$の$\angle \mathrm{A}$の二等分線と$\triangle \mathrm{ABC}$の外接円との交点を$\mathrm{D}$とし,辺$\mathrm{BC}$と辺$\mathrm{AD}$の交点を$\mathrm{E}$とするとき,次の問いに答えよ.ただし,$\mathrm{AB}=5$,$\mathrm{AC}=4$,$\angle \mathrm{BDC}=120^\circ$とする.

(1)辺$\mathrm{BD}$,$\mathrm{BC}$のそれぞれの長さを求めよ.
(2)$\triangle \mathrm{ABC}$の内接円の半径を求めよ.
(3)$\triangle \mathrm{ABC}$の外接円の半径を求めよ.
北海学園大学 私立 北海学園大学 2013年 第3問
$\mathrm{AB}=\mathrm{AC}=\sqrt{10}$である三角形$\mathrm{ABC}$の外接円の中心を$\mathrm{O}$とする.この円の半径は$2$である.この円の,点$\mathrm{A}$を含まない弧$\mathrm{BC}$上に点$\mathrm{D}$をとり,直線$\mathrm{AD}$と直線$\mathrm{OC}$の共有点を$\mathrm{E}$とする.線分$\mathrm{DB}$と線分$\mathrm{DC}$の長さが$\mathrm{DB}:\mathrm{DC}=3:2$を満たすとき,次の線分の長さを求めよ.

$(1) \quad \mathrm{DC} \qquad (2) \quad \mathrm{AD} \qquad (3) \quad \mathrm{CE}$
北海学園大学 私立 北海学園大学 2013年 第1問
次の各問いに答えよ.

(1)$x^2(x^2+1)-(x-2)(x+1)(x^2-x+2)$を計算して簡単にせよ.
(2)$\mathrm{AB}=2$,$\mathrm{AC}=1$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{1}{4}$である三角形$\mathrm{ABC}$において,辺$\mathrm{BC}$の中点を$\mathrm{M}$とする.このとき,線分$\mathrm{MC}$の長さと,三角形$\mathrm{AMC}$の外接円の半径$R$をそれぞれ求めよ.
(3)$a=5+\sqrt{3}$,$b=5-\sqrt{3}$,$c=3+\sqrt{5}$,$d=3-\sqrt{5}$のとき,$\displaystyle \frac{1}{ac}+\frac{1}{ad}+\frac{1}{bc}+\frac{1}{bd}$の値を求めよ.
名城大学 私立 名城大学 2013年 第2問
$\triangle \mathrm{ABC}$は$\mathrm{AB}=7$,$\mathrm{BC}=8$,$\mathrm{AC}=5$とする.そして,辺$\mathrm{BC}$上に点$\mathrm{D}$をとる(ただし,点$\mathrm{D}$は点$\mathrm{B}$および点$\mathrm{C}$と一致しない).また,$\triangle \mathrm{ABD}$の外接円の半径を$r_1$,$\triangle \mathrm{ACD}$の外接円の半径を$r_2$とする.次の問に答えよ.

(1)$\sin \angle \mathrm{ACB}$の値を求めよ.
(2)$\mathrm{AD}=\mathrm{AC}$の場合,線分$\mathrm{BD}$の長さを求めよ.
(3)$\mathrm{AD}=t$として,$\displaystyle \frac{r_1}{r_2}$の値は$t$の値によらず一定であることを示し,その値を求めよ.
西南学院大学 私立 西南学院大学 2013年 第4問
三角形$\mathrm{ABC}$について$\mathrm{AB}=7$,$\mathrm{BC}=5$,$\mathrm{CA}=3 \sqrt{2}$である.また,三角形$\mathrm{ABC}$の外接円の中心を$\mathrm{O}$とする.このとき,以下の内積を求めよ.

(1)$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[ニヌ]$
(2)$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{BC}}=[ネノハ]$
(3)$\displaystyle \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AO}}=\frac{[ヒフ]}{[ヘ]}$
広島修道大学 私立 広島修道大学 2013年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)方程式$2x^2+3x-4=0$の解は$[$1$]$である.
(2)$a,\ b$を定数とし,$a>0$とする.$1$次関数$y=ax+b (-1 \leqq x \leqq 5)$の値域が$-2 \leqq y \leqq 2$であるとき,$a,\ b$の値は$a=[$2$]$,$b=[$3$]$である.
(3)放物線$y=x^2+x+2$と直線$y=ax-a$が共有点をもたないような定数$a$の値の範囲は$[$4$]$である.
(4)多項式$P(x)=x^3+ax^2+2x+5a$を$x-3$で割った余りが$5$であるとき,定数$a$の値は$[$5$]$であり,商は$[$6$]$である.
(5)半径$r$の円$x^2+y^2=r^2$と直線$4x+3y-5=0$が接するとき,$r=[$7$]$である.また,接点の座標は$[$8$]$である.
(6)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=1$,$\mathrm{BC}=\sqrt{3}$,$\mathrm{CA}=\sqrt{5}$のとき,$\cos A$の値は$[$9$]$,$\triangle \mathrm{ABC}$の面積は$[$10$]$である.また,$\triangle \mathrm{ABC}$の外接円の半径は$[$11$]$である.
北里大学 私立 北里大学 2013年 第3問
次の$[ ]$にあてはまる答を求めよ.

(1)$\mathrm{AB}=5$,$\mathrm{BC}=6$,$\mathrm{CA}=4$である三角形$\mathrm{ABC}$を考える.$\cos \angle \mathrm{BAC}$の値は$[ ]$であり,三角形$\mathrm{ABC}$の面積は$[ ]$である.また,三角形$\mathrm{ABC}$の外接円の半径は$[ ]$である.さらに,三角形$\mathrm{ABC}$の内接円の中心を$\mathrm{I}$とし,直線$\mathrm{AI}$と辺$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,線分$\mathrm{AI}$の長さを線分$\mathrm{ID}$の長さで割った$\displaystyle \frac{\mathrm{AI}}{\mathrm{ID}}$の値は$[ ]$である.
(2)放物線$y=x^2-4x+3$を$C$とおく.点$(2,\ -5)$から$C$に引いた$2$本の接線の方程式は$y=[ ]$と$y=[ ]$である.これら$2$本の接線と$C$で囲まれた図形の面積は$[ ]$である.
北里大学 私立 北里大学 2013年 第1問
次の各文の$[ ]$にあてはまる答を求めよ.

(1)$\mathrm{AB}=4$,$\mathrm{AD}=3$である四角形$\mathrm{ABCD}$において,$2$本の対角線の交点$\mathrm{E}$は線分$\mathrm{BD}$を$3:2$に内分し,線分$\mathrm{AC}$を$1:4$に内分しているとする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{d}$とおく.このとき,ベクトル$\overrightarrow{\mathrm{AC}}$は$\overrightarrow{\mathrm{AC}}=[ア] \overrightarrow{b}+[イ] \overrightarrow{d}$と表せる.さらに,線分$\mathrm{AC}$と線分$\mathrm{BD}$が垂直に交わるとき,内積$\overrightarrow{b} \cdot \overrightarrow{d}$の値は$[ウ]$であり,四角形$\mathrm{ABCD}$の面積は$[エ]$である.
(2)$6$人の生徒$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$,$\mathrm{d}$,$\mathrm{e}$,$\mathrm{f}$を$3$つの部屋$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$に入れる.各部屋は$6$人まで入れることができる.このとき,空室があってもよいとして,$3$つの部屋への生徒の入れ方は全部で$[オ]$通りある.また,各部屋に$2$人ずつ入るような生徒の入れ方は全部で$[カ]$通りあり,空室ができないような生徒の入れ方は全部で$[キ]$通りある.
(3)$x$の関数$f(x)$を$\displaystyle f(x)=\int_1^{2x} |t(t-x)| \, dt$により定める.このとき,$f(x) \geqq 0$となるための$x$の条件は$[ク]$である.また,$f(1)$の値は$f(1)=[ケ]$であり,$x>1$のときの$f(x)$を求めると$f(x)=[コ]$である.
(4)三角形$\mathrm{ABC}$の内心を$\mathrm{I}$とし,三角形$\mathrm{ABC}$の外接円と直線$\mathrm{AI}$との交点で$\mathrm{A}$以外のものを$\mathrm{D}$とする.$\mathrm{AB}=2$,$\mathrm{AC}=3$,$\mathrm{AD}=4$のとき,$\cos \angle \mathrm{BAD}=[サ]$であり,$\mathrm{BD}=[シ]$,$\mathrm{CD}=[ス]$,$\mathrm{BC}=[セ]$である.
安田女子大学 私立 安田女子大学 2013年 第2問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=5$,$\mathrm{BC}=12$,$\mathrm{CA}=13$のとき,次の問いに答えよ.

(1)$\sin \angle \mathrm{B}$の値を求めよ.
(2)$\triangle \mathrm{ABC}$の外接円の半径を求めよ.
(3)$\triangle \mathrm{ABC}$の内接円の半径を求めよ.
スポンサーリンク

「外接円」とは・・・

 まだこのタグの説明は執筆されていません。