タグ「外接円」の検索結果

12ページ目:全155問中111問~120問を表示)
昭和大学 私立 昭和大学 2012年 第4問
鋭角三角形$\mathrm{ABC}$において,$\mathrm{AB}=\sqrt{6}+\sqrt{2}$,$\mathrm{AC}=2 \sqrt{3}$で面積が$3+\sqrt{3}$のとき,以下の値を求めよ.

(1)$\sin A$
(2)$\cos A$
(3)三角形$\mathrm{ABC}$の外接円の半径
(4)三角形$\mathrm{ABC}$の内接円の半径
神戸薬科大学 私立 神戸薬科大学 2012年 第2問
以下の文中の$[ ]$の中にいれるべき数または式等を求めて記入せよ.

(1)平面上に$\triangle \mathrm{ABC}$と点$\mathrm{P}$があり,次の式を満たしている.
\[ 2 \overrightarrow{\mathrm{AP}}+3 \overrightarrow{\mathrm{BP}}+4 \overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{0}} \]

(i) $\overrightarrow{\mathrm{AP}}=[ ] \overrightarrow{\mathrm{AB}}+[ ] \overrightarrow{\mathrm{AC}}$である.
(ii) $2$直線$\mathrm{AP}$,$\mathrm{BC}$の交点を$\mathrm{Q}$とする.点$\mathrm{Q}$は線分$\mathrm{BC}$を$[ ]$の比に内分する.また点$\mathrm{P}$は線分$\mathrm{AQ}$を$[ ]$の比に内分する.

(2)円に内接する四角形$\mathrm{ABCD}$において$\mathrm{AB}=1$,$\mathrm{AD}=2$,$\angle \mathrm{BCD}={60}^\circ$であるとき$\mathrm{BD}=[ ]$であり,外接円の半径$R=[ ]$である.また$\mathrm{CD}=3 \mathrm{BC}$のとき$\mathrm{BC}=[ ]$であり,四角形$\mathrm{ABCD}$の面積は$[ ]$である.
法政大学 私立 法政大学 2012年 第3問
四角形$\mathrm{ABCD}$は,$4$つの内角がいずれも${180}^\circ$より小さく,$\mathrm{AB}=3$,$\mathrm{BC}=\sqrt{2}$,$\mathrm{CD}=\sqrt{6}$,$\mathrm{AD}=1$を満たすとする.

(1)$\angle \mathrm{BAD}={60}^\circ$のとき,$\cos \angle \mathrm{BCD}$の値を求めよ.
(2)${90}^\circ \leqq \angle \mathrm{BAD}$であり,$\triangle \mathrm{ABD}$の外接円の半径が$\displaystyle \frac{3 \sqrt{6}}{4}$のとき,$\triangle \mathrm{BCD}$の外接円の半径を求めよ.
大阪学院大学 私立 大阪学院大学 2012年 第4問
$\mathrm{AB}=3$,$\mathrm{BC}=4$,$\mathrm{CA}=5$の直角三角形$\mathrm{ABC}$の外接円を$\mathrm{O}$とする.下図のように,辺$\mathrm{BC}$上に点$\mathrm{P}$をとり,線分$\mathrm{AP}$の延長と円$\mathrm{O}$との交点を$\mathrm{Q}$とする.さらに,$\mathrm{Q}$における円$\mathrm{O}$の接線と辺$\mathrm{AB}$の延長との交点を$\mathrm{R}$とする.$\mathrm{BP}=3$のとき,次の問いに答えなさい.
(図は省略)

(1)$\mathrm{AQ}$を求めなさい.
(2)$\mathrm{BQ}$を求めなさい.
(3)$\mathrm{QR}$は$\mathrm{BR}$の何倍かを求めなさい.
(4)$\mathrm{BR}$を求めなさい.
法政大学 私立 法政大学 2012年 第3問
三角形$\mathrm{ABC}$において,$\mathrm{CA}=\mathrm{CB}=3$,$\mathrm{AB}=4$である.また,$\overrightarrow{\mathrm{CA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{CB}}=\overrightarrow{b}$とおく.

(1)$\cos \angle \mathrm{BCA}=\frac{[ア]}{[イ]}$である.また,三角形$\mathrm{ABC}$の外接円の半径は$\displaystyle \frac{[ウ] \sqrt{[エ]}}{[オカ]}$である.
(2)$\overrightarrow{a} \cdot \overrightarrow{b}=[キ]$である.
(3)点$\mathrm{C}$を通り直線$\mathrm{AB}$に直交する直線$\ell$と$\mathrm{AB}$の交点を$\mathrm{M}$とすると,
$\displaystyle \overrightarrow{\mathrm{CM}}=\frac{[ク]}{[ケ]} \left( \overrightarrow{a}+\overrightarrow{b} \right)$である.また,点$\mathrm{B}$を通り直線$\mathrm{CA}$に直交する直線と$\ell$の交点を$\mathrm{H}$とすると,$\displaystyle \overrightarrow{\mathrm{CH}}=\frac{[コ]}{[サシ]} \left( \overrightarrow{a}+\overrightarrow{b} \right)$である.
次に,三角形$\mathrm{ABC}$の外心を$\mathrm{O}$とすると,$\displaystyle \mathrm{OH}=\frac{[ス] \sqrt{[セ]}}{[ソタ]}$である.
久留米大学 私立 久留米大学 2012年 第3問
$a$は正の実数で,点$\mathrm{A}(0,\ a)$,点$\mathrm{P}(-2,\ 0)$,点$\mathrm{Q}(2,\ 0)$を頂点とする三角形を考える.この三角形の外接円の中心座標は$[$5$]$,半径は$[$6$]$であり,$a=[$7$]$のとき,外接円の半径は最小値$[$8$]$をとる.
安田女子大学 私立 安田女子大学 2012年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}$を計算せよ.

(2)$x^3-x^2-4x+4$を因数分解せよ.
(3)$0^\circ<\theta<{60}^\circ$のとき,$\cos ({180}^\circ-\theta)$の値の範囲を求めよ.
(4)$\mathrm{BC}=3$,$\angle B={135}^\circ$である$\mathrm{ABC}$において,外接円の半径が$3$のとき,$\angle A$の大きさを求めよ.
安田女子大学 私立 安田女子大学 2012年 第3問
直角三角形$\mathrm{ABC}$において,$\mathrm{AB}=\sqrt{3}$,$\mathrm{BC}=1$,$\mathrm{CA}=2$である.図のように,$\triangle \mathrm{ABC}$の外接円上の点$\mathrm{B}$における接線上に$\mathrm{BD}=2 \sqrt{3}$となるように点$\mathrm{D}$をとる.このとき,次の問いに答えよ.
(図は省略)

(1)$\cos \angle \mathrm{CBD}$を求めよ.
(2)線分$\mathrm{CD}$の長さを求めよ.
(3)線分$\mathrm{CD}$の$\mathrm{C}$を越える延長と$\triangle \mathrm{ABC}$の外接円との交点のうち,点$\mathrm{C}$と異なる点を$\mathrm{E}$とするとき,$\triangle \mathrm{BDE}$の面積を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の$3$辺の長さがそれぞれ
\[ \mathrm{AB}=5,\quad \mathrm{BC}=7,\quad \mathrm{AC}=4 \sqrt{2} \]
であるとする.この三角形の$\angle \mathrm{ABC}$の大きさを$B$で表すと
\[ \cos B=\frac{[ア]}{[イ]} \]
であり,$\triangle \mathrm{ABC}$の外接円の半径$R$は,
\[ R=\frac{[ウ]}{[エ]} \sqrt{[オ]} \]
である.また,$\angle \mathrm{ABC}$の$2$等分線と$\triangle \mathrm{ABC}$の外接円の交点で$\mathrm{B}$と異なる点を$\mathrm{D}$とする.このとき,
\[ \mathrm{AD}=\sqrt{[カ][キ]} \]
であり,さらに$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とすると,$\triangle \mathrm{AOD}$の面積は$[ク]$となる.
(2)赤玉$3$個,白玉$4$個,青玉$5$個が入っている袋から,玉を同時に$4$個取り出すとき,次の確率を求めよ.

(i) 取り出した玉の色がすべて青色である確率は$\displaystyle \frac{[ケ]}{[コ][サ]}$である.

(ii) 取り出した玉の色が少なくとも$2$種類である確率は,$\displaystyle \frac{[シ][ス][セ]}{165}$である.

(iii) 取り出した玉の色が$3$種類である確率は,$\displaystyle \frac{[ソ]}{[タ][チ]}$である.
\mon[$\tokeishi$] 取り出した玉に赤玉が少なくとも$2$個含まれている確率は,$\displaystyle \frac{[ツ][テ]}{[ト][ナ]}$である.

(3)関数$f_0(x),\ f_1(x),\ f_2(x)$を
\[ f_0(x)=e^{x^2},\quad f_1(x)=xe^{x^2},\quad f_2(x)=x^2e^{x^2} \]
と定める.ただし,$e$は自然対数の底であり,$e^{x^2}$は$e^{(x^2)}$を表す.
関数$f_n(x) (n=0,\ 1,\ 2)$の導関数を$g_n(x)$とすると,
\setstretch{2.0}
\[ \begin{array}{l}
g_0(x)=[ニ]xe^{x^2} \\
g_1(x)=([ヌ]x^2+[ネ])e^{x^2} \\
g_2(x)=([ノ]x^3+[ハ]x)e^{x^2}
\end{array} \]
\setstretch{1.4}
である.関数$h(x)$を
\[ h(x)=(3x^3+8x^2-15x+4)e^{x^2} \]
と定めると,座標平面で曲線$y=h(x)$は$x$軸と$3$点で交わり,その交点の$x$座標は$-[ヒ]$,$\displaystyle\frac{[フ]}{[ヘ]}$,$[ホ]$である.また,
\[ h(x)=\frac{[マ]}{[ミ]} g_2(x)+[ム]g_1(x)-[メ]g_0(x) \]
であるから,曲線$y=h(x)$と$x$軸で囲まれた図形のうち$x$軸の下にある部分の面積を$S$とすると,
\[ S=\frac{1}{[モ]} \left( [ヤ]e-[ユ][ヨ] e^{\frac{[ラ]}{[リ]}} \right) \]
となる.
東京女子大学 私立 東京女子大学 2012年 第1問
$\mathrm{AC}=\mathrm{BC}$をみたす二等辺三角形$\mathrm{ABC}$を考える.$\triangle \mathrm{ABC}$の外接円において,点$\mathrm{D}$は点$\mathrm{B}$を含まない弧$\mathrm{AC}$上にあり,$\mathrm{AD}=\mathrm{CD}$である.$\mathrm{AB}=2$,$\mathrm{BC}=3$のとき,以下の設問に答えよ.

(1)$\angle \mathrm{ABC}=\theta$とおくとき,$\sin \theta$を求めよ.
(2)$\mathrm{AD}$の長さを求めよ.
(3)四角形$\mathrm{ABCD}$の面積を求めよ.
スポンサーリンク

「外接円」とは・・・

 まだこのタグの説明は執筆されていません。