タグ「外心」の検索結果

6ページ目:全56問中51問~60問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2011年 第4問
平面内に三角形ABCがある.その平面上で,1点Oを定めておく.次の問いに答えよ.

(1)三角形ABCの内部に点Pがあるとする.このとき,3つの三角形PBC,PCA,PABの面積の比が$x:y:z$であるならば,点Pの位置ベクトル$\overrightarrow{\mathrm{OP}}$は次のように表されることを示せ.
\[ \overrightarrow{\mathrm{OP}}=\frac{x \overrightarrow{\mathrm{OA}}+y \overrightarrow{\mathrm{OB}}+z \overrightarrow{\mathrm{OC}}}{x+y+z} \]
(2)三角形ABCの3辺の長さを$a=\text{BC},\ b=\text{CA},\ c=\text{AB}$とする.このとき三角形ABCの内心Iについて,その位置ベクトル$\overrightarrow{\mathrm{OI}}$を,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$と$a,\ b,\ c$を用いて表せ.
(3)三角形ABCが鋭角三角形であるとき,その外心Qの位置ベクトル$\overrightarrow{\mathrm{OQ}}$を,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$と$\alpha=\angle \text{CAB},\ \beta=\angle \text{ABC}$を用いて表せ.
旭川医科大学 国立 旭川医科大学 2011年 第2問
平面上に正三角形でない鋭角三角形$\mathrm{ABC}$が与えられている.辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$とし,$\displaystyle s=\frac{a+b+c}{2}$とおく.さらに,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$をそれぞれ$s-c:s-b,\ s-a:s-c,\ s-b:s-a$に内分する点を$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$とする.また,$\mathrm{O}$を原点とする.次の問いに答えよ.

(1)点Nを$\displaystyle \overrightarrow{\mathrm{ON}}=\frac{(s-a)\overrightarrow{\mathrm{OA}}+(s-b)\overrightarrow{\mathrm{OB}}+(s-c)\overrightarrow{\mathrm{OC}}}{s}$と定義するとき,$3$直線$\mathrm{AX}$,$\mathrm{BY}$,$\mathrm{CZ}$は$\mathrm{N}$で交わることを示せ.
(2)$\mathrm{P}$を$\triangle \mathrm{ABC}$の内部の点,$\triangle \mathrm{PBC}$,$\triangle \mathrm{PCA}$,$\triangle \mathrm{PAB}$の面積をそれぞれ$S_A,\ S_B,\ S_C$とするとき,
\[ \overrightarrow{\mathrm{OP}}=\frac{S_A\overrightarrow{\mathrm{OA}}+S_B\overrightarrow{\mathrm{OB}}+S_C\overrightarrow{\mathrm{OC}}}{S_A+S_B+S_C} \]
と表される.このことを用いて,$\triangle \mathrm{ABC}$の外心を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$,$a$,$b$,$c$を用いて表せ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とする.点$\mathrm{N}$が$\mathrm{Q}$と$\mathrm{G}$を通る直線上にあるとき,$\triangle \mathrm{ABC}$は$2$等辺三角形であることを示せ.
明治大学 私立 明治大学 2011年 第4問
平行四辺形$\mathrm{ABCD}$を考える.辺$\mathrm{AB}$と辺$\mathrm{AD}$の長さは,それぞれ$3,\ 4$で,$\angle \mathrm{ABC}$は$60^\circ$であるとする.辺$\mathrm{AD}$と辺$\mathrm{BC}$の中点をそれぞれ,$\mathrm{M}$,$\mathrm{N}$とおく.また,線分$\mathrm{AN}$と線分$\mathrm{BD}$の交点を$\mathrm{P}$とし,線分$\mathrm{CM}$と線分$\mathrm{BD}$の交点を$\mathrm{Q}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{BC}}$とおく.以下の問に答えなさい.

(1)$\displaystyle \overrightarrow{\mathrm{AP}}=\frac{[ヘ]}{[ホ]} \overrightarrow{a}+\frac{[マ]}{[ミ]} \overrightarrow{b}$と表せる.また,$\displaystyle \mathrm{AP}=\frac{[ム] \sqrt{[メ]}}{[モ]}$となる.

(2)$\displaystyle \cos (\angle \mathrm{PAQ})=\frac{[ヤユ] \sqrt{[ヨ]}}{[ラリ]}$となる.
(3)三角形$\mathrm{ABP}$の外接円の半径は$\displaystyle \frac{\sqrt{[ルレロ]}}{[ワヲ]}$である.
(4)三角形$\mathrm{ABP}$の外心を$\mathrm{O}$とおくとき,$\overrightarrow{\mathrm{AO}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表しなさい.
福井大学 国立 福井大学 2010年 第4問
曲線$C:y=e^x$上の点P$(t,\ e^t)$における接線を$\ell$とし,$\ell$と$x$軸との交点をQとする.さらに,Qを通り$\ell$に直交する直線と$C$との交点をRとする.以下の問いに答えよ.

(1)点Qの$x$座標を$t$を用いて表せ.
(2)$\triangle$PQRの外心が$y$軸上にあるときの$t$の値を求めよ.
(3)$t$を(2)で求めた値とするとき,直線PQ,QRと$C$とで囲まれる部分を$x$軸の周りに1回転して得られる回転体の体積を求めよ.
山口大学 国立 山口大学 2010年 第1問
$3$辺が$\mathrm{AB}=4,\ \mathrm{BC}=6,\ \mathrm{CA}=5$である$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$,$\angle \mathrm{A}$の$2$等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問いに答えなさい.

(1)$\triangle \mathrm{ABC}$の外接円の半径を求めなさい.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{b} \cdot \overrightarrow{c}$を求めなさい.
(3)$\mathrm{OB} \perp \mathrm{AD}$を示しなさい.
関西大学 私立 関西大学 2010年 第2問
平面上の四角形$\mathrm{OABC}$について,$\mathrm{OA}=\mathrm{OB}=1$,$\displaystyle \mathrm{OC}=\frac{\sqrt{7}}{3}$および$\displaystyle \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OB}}-\frac{2}{3} \overrightarrow{\mathrm{OA}}$が成り立っているとする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.次の$[ ]$をうめよ.

$\mathrm{CB}=[$1$]$,$\overrightarrow{a} \cdot \overrightarrow{b}=[$2$]$であり,$\angle \mathrm{AOB}$は$[$3$]$度である.
$t>0$とし,直線$\mathrm{OA}$上に点$\mathrm{D}$を$\overrightarrow{\mathrm{OD}}=t \overrightarrow{\mathrm{OA}}$となるようにとる.このとき,線分$\mathrm{OB}$と線分$\mathrm{CD}$との交点を$\mathrm{P}$とおくと,$t$を用いて$\overrightarrow{\mathrm{OP}}=[$4$] \overrightarrow{b}$と書ける.
$\triangle \mathrm{OPD}$の重心$\mathrm{G}$が$\triangle \mathrm{OAB}$の内部または周上にあるような$t$の範囲は$0<t \leqq [$5$]$である.また,$\triangle \mathrm{OPD}$の外心を$\mathrm{R}$とおくと,$\overrightarrow{\mathrm{OR}}-[$6$] \overrightarrow{\mathrm{OD}}$と$\overrightarrow{a}$が垂直であり,$\overrightarrow{\mathrm{OR}}-[$6$] \overrightarrow{\mathrm{OP}}$と$\overrightarrow{b}$も垂直であることから,$\displaystyle t=\frac{1}{3}$のとき,$\overrightarrow{\mathrm{OR}}=[$7$] \overrightarrow{a}+[$8$] \overrightarrow{b}$であり,$|\overrightarrow{\mathrm{OR}}|=[$9$]$である.
スポンサーリンク

「外心」とは・・・

 まだこのタグの説明は執筆されていません。