タグ「外心」の検索結果

4ページ目:全56問中31問~40問を表示)
信州大学 国立 信州大学 2013年 第1問
$xy$平面上の原点$\mathrm{O}$を中心とし,半径が$1$である円$C$の円周上に,点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(\cos \theta,\ \sin \theta)$をとる.ただし,$0<\theta<\pi$とする.このとき,次の問に答えよ.

(1)三角形$\mathrm{OAB}$の外心$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{P}$が円$C$の円周上にあるとき,$\theta$の値を求めよ.
信州大学 国立 信州大学 2013年 第2問
$xy$平面上の原点$\mathrm{O}$を中心とし,半径が1である円$C$の円周上に,点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(\cos \theta,\ \sin \theta)$をとる.ただし,$0<\theta<\pi$とする.このとき,次の問に答えよ.

(1)三角形$\mathrm{OAB}$の外心$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{P}$が円$C$の円周上にあるとき,$\theta$の値を求めよ.
奈良女子大学 国立 奈良女子大学 2013年 第1問
半径$1$の外接円をもつ三角形$\mathrm{ABC}$の外心を$\mathrm{O}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.$2 \overrightarrow{a}+3 \overrightarrow{b}+3 \overrightarrow{c}=\overrightarrow{\mathrm{0}}$であるとき,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)辺$\mathrm{AB}$,$\mathrm{AC}$の長さをそれぞれ求めよ.
(3)$\angle \mathrm{BAC}=\theta$とおく.$\cos \theta$の値を求めよ.
自治医科大学 私立 自治医科大学 2013年 第14問
$3$点$\mathrm{A}(1,\ 4)$,$\mathrm{B}(-2,\ 1)$,$\mathrm{C}(4,\ 2)$を頂点とする三角形$\mathrm{ABC}$の外心の座標を$(p,\ q)$としたとき,$10(p-q)$の値を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2013年 第3問
$\mathrm{O}$を中心とする半径$1$の円周上に相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおき,$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \neq \overrightarrow{\mathrm{0}}$とする.線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の中点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とし,$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$,$\overrightarrow{\mathrm{OR}}=\overrightarrow{r}$とおく.

このとき,以下の$[$1$]$~$[$6$]$について適切な値を,$[イ]$には適切な式を解答欄に答えなさい.また,$[ア]$,$[ウ]$には下部の選択肢からもっともふさわしいものを選択して,解答欄に記入しなさい.
ベクトル$\displaystyle \overrightarrow{d}=\frac{1}{2}(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c})$とすると,
\[ |\overrightarrow{d}-\overrightarrow{p}|=|\overrightarrow{d}-\overrightarrow{q}|=|\overrightarrow{d}-\overrightarrow{r}|=[$1$] \]
となり,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$によって定まる点$\mathrm{D}$は$\triangle \mathrm{PQR}$の$[ア]$となることがわかる.
いま,線分$\mathrm{AB}$の長さを$1$,線分$\mathrm{AC}$の長さを$\sqrt{3}$とし,$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$は,どの$2$つも平行ではないとする.このとき,線分$\mathrm{BC}$の長さは$[$2$]$であり,$\overrightarrow{a} \cdot \overrightarrow{c}=[$3$]$である.また,$\overrightarrow{b}$を$\overrightarrow{a}$と$\overrightarrow{c}$で表すと,$\overrightarrow{b}=[イ]$となる.
また,$\triangle \mathrm{PQR}$について,$\angle \mathrm{QPR}$の二等分線と辺$\mathrm{QR}$の交点を$\mathrm{S}$とおき,$\overrightarrow{\mathrm{PS}}$を$\overrightarrow{a}$と$\overrightarrow{c}$で表すと,
\[ \overrightarrow{\mathrm{PS}}=[$4$] \overrightarrow{a}+[$5$] \overrightarrow{c} \]
とかける.同様にして,$\angle \mathrm{PQR}$の二等分線と辺$\mathrm{PR}$の交点を$\mathrm{T}$とおく.線分$\mathrm{PS}$と線分$\mathrm{QT}$の交点を$\mathrm{U}$とおくと,$\mathrm{U}$は$\triangle \mathrm{PQR}$の$[ウ]$となり,
\[ \overrightarrow{\mathrm{OU}}=[$6$] \overrightarrow{b} \]
となることがわかる.
\begin{screen}
選択肢: \quad 重心, \quad 内心, \quad 外心
\end{screen}
滋賀大学 国立 滋賀大学 2012年 第4問
$\triangle$ABCにおいて,$\text{AB}=3,\ \text{AC}=5,\ \text{BC}=2\sqrt{6}$とする.$\triangle$ABCの外心をOとし,Oから辺ABに下ろした垂線とABの交点をM,Oから辺ACに下ろした垂線とACの交点をN,直線AOと辺BCの交点をDとする.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$の内積を求めよ.
(2)$|\overrightarrow{\mathrm{AO}}|$の値を求めよ.
(3)$\text{BD}:\text{DC}=s:1-s,\ \overrightarrow{\mathrm{AO}}=k\overrightarrow{\mathrm{AD}}$とするとき,$\overrightarrow{\mathrm{MO}}$と$\overrightarrow{\mathrm{NO}}$をそれぞれ$k,\ s,\ \overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$を用いて表せ.
(4)$\overrightarrow{\mathrm{AO}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表せ.
大分大学 国立 大分大学 2012年 第2問
三角形OABで$\displaystyle \overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ |\overrightarrow{a}|=|\overrightarrow{b}|=1,\ \angle \text{AOB}=\frac{\pi}{6}$とする.このとき次の問いに答えよ.

(1)三角形OABの外接円の中心(外心)Qの位置ベクトル$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
(2)頂点OとAからそれぞれの対辺ABとOBに下ろした垂線の交点(垂心)をHとするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
(3)$|\overrightarrow{\mathrm{AB}}|$の値を求めよ.
(4)三角形OABの内接円の中心(内心)Pの位置ベクトル$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
宮崎大学 国立 宮崎大学 2012年 第5問
次の各問に答えよ.
(図は省略)

(1)上図$\mathrm{I}$において,点$\mathrm{O}$を中心とする円の半径を$R$とする.この円の弦$\mathrm{XY}$上の任意の点を$\mathrm{P}$とするとき,等式
\[ \mathrm{OP}^2=R^2-\mathrm{XP} \cdot \mathrm{YP} \]
が成り立つことを示せ.
(2)上図$\mathrm{II}$の$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$,内心を$\mathrm{I}$とする.$\triangle \mathrm{ABC}$の外接円,内接円の半径をそれぞれ$R$,$r$とする.また,直線$\mathrm{AI}$と$\triangle \mathrm{ABC}$の外接円の,点$\mathrm{A}$と異なる交点を$\mathrm{D}$,$\triangle \mathrm{ABC}$の内接円と辺$\mathrm{AB}$との接点を$\mathrm{E}$とする.このとき,次の$(ⅰ),\ (ⅱ),\ (ⅲ)$に答えよ.

(i) $\mathrm{DB}=\mathrm{DI}$であることを示せ.
(ii) $\mathrm{AI} \cdot \mathrm{DI}=2Rr$であることを示せ.
(iii) $\mathrm{OI}^2=R^2-2Rr$であることを示せ.
上智大学 私立 上智大学 2012年 第2問
$\triangle \mathrm{ABC}$において, $\mathrm{AB}=4$,$\mathrm{BC}=6$,$\mathrm{CA}=5$とする.$\triangle \mathrm{ABC}$の外心を$\mathrm{P}$,内心を$\mathrm{Q}$とおく.

(1)$\triangle \mathrm{ABC}$の外接円の半径は$\displaystyle\frac{[コ]}{[サ]}\sqrt{[シ]}$である.
(2)$\triangle \mathrm{ABC}$の内接円の半径は$\displaystyle\frac{[ス]}{[セ]}\sqrt{[ソ]}$である.
(3)$\angle \mathrm{PAB}=\alpha$ とおくとき,$\cos \alpha = \displaystyle\frac{[タ]}{[チ]}\sqrt{[ツ]}$である.
(4)$\angle \mathrm{QAB}=\beta$ とおくとき,$\cos \beta = \displaystyle\frac{[テ]}{[ト]}$である.
(5)$\mathrm{AQ}=$[ナ]である.
(6)$\mathrm{PQ}= \displaystyle \frac{[ニ]}{[ヌ]}\sqrt{[ネ]}$である.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2012年 第1問
次の問いに答えよ.問い$(1)$~$(3)$については,$[ ]$にあてはまる適切な数値を記入せよ.

(1)$x$の$2$次不等式
\[ 6x^2-(16a+7)x+(2a+1)(5a+2) < 0 \]
をみたす整数$x$が$10$個となるように,正の整数$a$の値を定めると$[ア]$である.
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=\sqrt{2}$,$\mathrm{BC}=2$,$\mathrm{CA}=\sqrt{3}$とし外心を$\mathrm{O}$とする.このとき,$\overrightarrow{\mathrm{AO}}=s\overrightarrow{\mathrm{AB}}+t\overrightarrow{\mathrm{AC}}$をみたす実数$s,\ t$の値は$s=[イ],\ t=[ウ]$である.
(3)袋$\mathrm{A}$には赤玉$2$個と白玉$1$個,袋$\mathrm{B}$には赤玉$1$個と白玉$2$個が入っている.袋$\mathrm{A}$から玉を$2$個取り出して袋$\mathrm{B}$に入れ,よくかき混ぜて,袋$\mathrm{B}$から玉を$2$個取り出して袋$\mathrm{A}$に入れる.このとき,袋$\mathrm{A}$に入っている白玉の個数を$X$とすると,$X=0$となる確率は$[エ]$であり,$X=2$となる確率は$[オ]$である.
(4)関数$f(x)=|x^3|$が$x=0$で微分可能であるかどうか調べよ.
スポンサーリンク

「外心」とは・・・

 まだこのタグの説明は執筆されていません。