タグ「外心」の検索結果

2ページ目:全56問中11問~20問を表示)
鹿児島大学 国立 鹿児島大学 2015年 第6問
平面上に三角形$\mathrm{ABC}$と点$\mathrm{O}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき
\[ \overrightarrow{a} \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{c}=\overrightarrow{c} \cdot \overrightarrow{a} \neq 0 \]
を満たしていると仮定する.辺$\mathrm{BC}$の中点を$\mathrm{M}$,線分$\mathrm{OB}$の中点を$\mathrm{N}$とし,三角形$\mathrm{OBC}$の外心を$\mathrm{P}$とする.このとき,次の各問いに答えよ.

(1)$\mathrm{M} \neq \mathrm{P}$のとき,線分$\mathrm{MP}$と線分$\mathrm{OA}$は平行であることを示せ.
(2)$\overrightarrow{\mathrm{MP}}=t \overrightarrow{a}$とおいて,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および実数$t$を用いて表せ.
(3)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
鹿児島大学 国立 鹿児島大学 2015年 第4問
平面上に三角形$\mathrm{ABC}$と点$\mathrm{O}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき
\[ \overrightarrow{a} \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{c}=\overrightarrow{c} \cdot \overrightarrow{a} \neq 0 \]
を満たしていると仮定する.辺$\mathrm{BC}$の中点を$\mathrm{M}$,線分$\mathrm{OB}$の中点を$\mathrm{N}$とし,三角形$\mathrm{OBC}$の外心を$\mathrm{P}$とする.このとき,次の各問いに答えよ.

(1)$\mathrm{M} \neq \mathrm{P}$のとき,線分$\mathrm{MP}$と線分$\mathrm{OA}$は平行であることを示せ.
(2)$\overrightarrow{\mathrm{MP}}=t \overrightarrow{a}$とおいて,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および実数$t$を用いて表せ.
(3)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
早稲田大学 私立 早稲田大学 2015年 第4問
座標平面上の$3$点$\mathrm{A}(\sqrt{3},\ -2)$,$\mathrm{B}(3 \sqrt{3},\ 0)$,$\mathrm{C}(4 \sqrt{3},\ -5)$を頂点とする三角形$\mathrm{ABC}$の外心を$\mathrm{D}$とする.このとき,
\[ \overrightarrow{\mathrm{AD}}=\frac{[サ]}{[シ]} \overrightarrow{\mathrm{AB}}+\frac{[ス]}{[セ]} \overrightarrow{\mathrm{AC}} \]
である.また,直線$\mathrm{AD}$と辺$\mathrm{BC}$の交点を$\mathrm{E}$とすると,$\displaystyle \frac{\mathrm{BE}}{\mathrm{EC}}=\frac{[ソ]}{[タ]}$である.
早稲田大学 私立 早稲田大学 2015年 第2問
三角形$\mathrm{OAB}$において$\mathrm{OA}=4$,$\mathrm{OB}=5$,$\mathrm{AB}=6$とする.三角形$\mathrm{OAB}$の外心を$\mathrm{H}$とするとき
\[ \overrightarrow{\mathrm{OH}}=\frac{[カ]}{[キ]} \overrightarrow{\mathrm{OA}}+\frac{[ク]}{[ケ]} \overrightarrow{\mathrm{OB}} \]
である.
早稲田大学 私立 早稲田大学 2015年 第2問
三角形$\mathrm{OAB}$において$\mathrm{OA}=4$,$\mathrm{OB}=5$,$\mathrm{AB}=6$とする.三角形$\mathrm{OAB}$の外心を$\mathrm{H}$とするとき
\[ \overrightarrow{\mathrm{OH}}=\frac{[カ]}{[キ]} \overrightarrow{\mathrm{OA}}+\frac{[ク]}{[ケ]} \overrightarrow{\mathrm{OB}} \]
である.
西南学院大学 私立 西南学院大学 2015年 第4問
$\mathrm{O}$を原点とし,$2$点$\mathrm{A}(\overrightarrow{a})$,$\mathrm{B}(\overrightarrow{b})$に関して,$|\overrightarrow{a}|=2$,$|\overrightarrow{b}|=3$,$|\overrightarrow{a}+\overrightarrow{b}|=4$であるとき,以下の問に答えよ.

(1)$\displaystyle \overrightarrow{a} \cdot \overrightarrow{b}=\frac{[マ]}{[ミ]}$である.
(2)三角形$\mathrm{OAB}$の外心を$\mathrm{H}$とすると,$\displaystyle \overrightarrow{\mathrm{OH}}=\frac{[ム]}{[メ]} \overrightarrow{a}+\frac{[モ]}{[ヤ]} \overrightarrow{b}$である.
北里大学 私立 北里大学 2015年 第1問
次の$[ ]$にあてはまる答を記せ.

(1)$k$を定数とするとき,方程式$\sqrt{4x-3}=x+k$の実数解の個数が$2$個となる$k$の値の範囲は$[ア]$,実数解の個数が$1$個となる$k$の値の範囲は$[イ]$である.また,曲線$y=\sqrt{4x-3}$と直線$y=x$で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積は$[ウ]$である.
(2)曲線$y=kx^3-1$と曲線$y=\log x$が共有点をもち,その点において共通の接線をもつとするとき,定数$k$の値は$[エ]$,共通の接線の方程式は$y=[オ]$である.
(3)数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とするとき,$\{a_n\}$は
\[ a_1=1,\quad a_{n+1}=S_n+n^2+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.このとき,$a_4=[カ]$であり,$\{a_n\}$の一般項は$a_n=[キ]$である.また,$S_n=[ク]$である.
(4)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\displaystyle \angle \mathrm{A}=\frac{\pi}{3}$である.$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.

(i) $\triangle \mathrm{ABC}$の外接円の半径は$[ケ]$である.
(ii) $\overrightarrow{\mathrm{AO}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表すと$\overrightarrow{\mathrm{AO}}=[コ] \overrightarrow{b}+[サ] \overrightarrow{c}$である.
(iii) 直線$\mathrm{BO}$と辺$\mathrm{AC}$の交点を$\mathrm{P}$とするとき,$\mathrm{AP}:\mathrm{PC}$は$[シ]$である.

(5)$\mathrm{X}$君と$\mathrm{Y}$さんは,毎日正午に次の規則にしたがって食事をとる.

(i) 食堂$\mathrm{A}$,食堂$\mathrm{B}$,食堂$\mathrm{C}$のいずれかで食事をとる.
(ii) 食堂は前日とは異なる$2$つの食堂のうちの$1$つを無作為に選ぶ.
(iii) $2$人が同じ食堂を選んだ日は,必ず一緒に食事をとる.

$1$日目,$2$人は別々の食堂で食事をとったとする.このとき,$3$日目に初めて$2$人が一緒に食事をとる確率は$[ス]$である.また,$2$人が一緒に食事をとる$2$回目の日が$7$日目となる確率は$[セ]$である.
京都薬科大学 私立 京都薬科大学 2015年 第2問
次の$[ ]$にあてはまる数を記入せよ.

座標平面上に$4$点$\mathrm{A}(6,\ 6)$,$\mathrm{B}(-3,\ 3)$,$\mathrm{C}(2,\ -2)$,$\mathrm{D}(-6,\ -6)$がある.

(1)$\triangle \mathrm{ABC}$の外心の座標は$([ア],\ [イ])$であり,外接円の半径は$[ウ]$である.この円を$C$とする.
(2)円$C$上を動く点$\mathrm{P}$と点$\mathrm{D}$に対して,線分$\mathrm{DP}$を$1:2$に内分する点の軌跡は円になる.この円の中心の座標は$([エ],\ [オ])$であり,半径は$[カ]$である.
(3)点$\mathrm{A}$での円$C$の接線を$\ell_1$とする.接線$\ell_1$の方程式は$y=[キ]x+[ク]$であり,$\ell_1$と$x$軸との交点$\mathrm{E}$の座標は$([ケ],\ 0)$である.
(4)点$\mathrm{E}$を通り,円$C$に接する直線は$2$本ある.$\ell_1$と異なる接線を$\ell_2$とし,$\ell_2$は点$\mathrm{F}$で円$C$に接するとする.点$\mathrm{F}$の座標は$([コ],\ [サ])$であり,$\ell_2$の方程式は$y=[シ]x+[ス]$である.
九州大学 国立 九州大学 2014年 第3問
鋭角三角形$\triangle \mathrm{ABC}$について,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさを,それぞれ$A$,$B$,$C$とする.$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$,外心を$\mathrm{O}$とし,外接円の半径を$R$とする.

(1)$\mathrm{A}$と$\mathrm{O}$から辺$\mathrm{BC}$に下ろした垂線を,それぞれ$\mathrm{AD}$,$\mathrm{OE}$とする.このとき,
\[ \mathrm{AD}=2R \sin B \sin C,\quad \mathrm{OE}=R \cos A \]
を証明せよ.
(2)$\mathrm{G}$と$\mathrm{O}$が一致するならば$\triangle \mathrm{ABC}$は正三角形であることを証明せよ.
(3)$\triangle \mathrm{ABC}$が正三角形でないとし,さらに$\mathrm{OG}$が$\mathrm{BC}$と平行であるとする.このとき,
\[ \mathrm{AD}=3 \mathrm{OE},\quad \tan B \tan C=3 \]
を証明せよ.
鳴門教育大学 国立 鳴門教育大学 2014年 第3問
$\triangle \mathrm{ABC}$の内心を$\mathrm{I}$,外心を$\mathrm{O}$,内接円の半径を$r$,外接円の半径を$R$とするとき,次の問いに答えなさい.

(1)$\mathrm{I}$と$\mathrm{O}$が一致するとき,$R=2r$となることを証明しなさい.
(2)$\angle \mathrm{ABC}$と$\angle \mathrm{ACB}$がともに${60}^\circ$より小さいとき,$\mathrm{BC}>2 \sqrt{3}r$となることを証明しなさい.
スポンサーリンク

「外心」とは・・・

 まだこのタグの説明は執筆されていません。