タグ「外分」の検索結果

4ページ目:全36問中31問~40問を表示)
福井大学 国立 福井大学 2011年 第3問
平面上に$\text{OA}=\text{OB}=1$である二等辺三角形OABがあり,線分ABを$2:1$に内分する点をC,$2:1$に外分する点をDとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ k=\overrightarrow{a} \cdot \overrightarrow{b}$とおくとき,以下の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OD}}$を求めよ.
(2)$\angle \text{AOB}=\angle \text{COD}$となるときの$k$の値$k_0$を求めよ.
(3)$\angle \text{APD}=90^\circ,\ \text{OP}=1$を満たす点Pに対し,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ k$を用いて表せ.
明治大学 私立 明治大学 2011年 第1問
以下の$[ア]$から$[ツ]$にあてはまる数字または式を記入せよ.

(1)数列
\[ \frac{1}{1+2},\ \frac{1}{1+2+3},\ \frac{1}{1+2+3+4},\ \cdots \]
の第$n$項を$a_n$で表すと
\[ a_{40} = \frac{1}{[ア][イ][ウ]} \]
であり,
\[ \sum_{n=40}^{80} a_n = \frac{[エ]}{[オ][カ]} \]
である.
(2)$\mathrm{OA}=2$,$\mathrm{OB}=1$である三角形$\mathrm{OAB}$において,$\angle \mathrm{AOB}$の$2$等分線と辺$\mathrm{AB}$の交点を$\mathrm{C}$とする.また線分$\mathrm{AB}$を$5:2$に外分する点を$\mathrm{D}$,線分$\mathrm{OB}$を$2:1$に外分する点を$\mathrm{E}$とする.さらに直線$\mathrm{OC}$と直線$\mathrm{DE}$の交点を$\mathrm{F}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,


$\displaystyle \overrightarrow{\mathrm{OC}}=\frac{[キ]}{[ク]} \overrightarrow{a}+\frac{[ケ]}{[コ]} \overrightarrow{b},$

$\displaystyle \overrightarrow{\mathrm{DE}}=\frac{[サ]}{[シ]} \overrightarrow{a}+\frac{[ス]}{[セ]} \overrightarrow{b},$

$\displaystyle \overrightarrow{\mathrm{OF}}=\frac{[ソ]}{[タ]} \overrightarrow{a}+\frac{[チ]}{[ツ]} \overrightarrow{b}$


となる.

(3)$\displaystyle \lim_{x \to 0}\frac{\sqrt{1+6x^2}-1}{\sin^2 x}=[テ]$
(4)$\comb{n}{5}$が$5$の倍数となるような整数$n$は,$100 \leqq n \leqq 125$の範囲に$[ト]$個ある.
北海学園大学 私立 北海学園大学 2011年 第4問
三角形$\mathrm{OAB}$において辺$\mathrm{AB}$を$2:1$に外分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$k:1$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$の延長が線分$\mathrm{OC}$と交わる点を$\mathrm{E}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えよ.ただし,$k$は正の実数とする.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(2)$\mathrm{OE}:\mathrm{EC}$を$k$を用いて表せ.
(3)三角形$\mathrm{BCE}$の面積を$S$,三角形$\mathrm{ABD}$の面積を$T$とするとき,すべての$k$に対して,$\displaystyle \frac{S}{T}<2$であることを示せ.
京都府立大学 公立 京都府立大学 2011年 第2問
$\triangle \mathrm{OAB}$に対し,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,$\overrightarrow{\mathrm{OP}}=s\overrightarrow{a}+t\overrightarrow{b}$で表される点$\mathrm{P}$を考える.点$\mathrm{C}$は辺$\mathrm{OB}$を$3:1$に外分する点とする.以下の問いに答えよ.

(1)実数$s,\ t$が$\displaystyle 0 \leqq s \leqq \frac{1}{2},\ 0 \leqq t \leqq \frac{1}{2}$の条件を満たしながら動くとき,$\mathrm{P}$の存在範囲を求めよ.
(2)実数$s,\ t$が$3s+2t=3,\ s \geqq 0,\ t \geqq 0$の条件を満たしながら動くとき,$\mathrm{P}$の存在範囲を求めよ.
(3)実数$s,\ t$が$s+2t=2,\ 3s+2t=3,\ s \geqq 0,\ t \geqq 0$の条件を満たすとき,$\displaystyle \frac{|\overrightarrow{\mathrm{CP}}|}{|\overrightarrow{\mathrm{AP}}|}$を求めよ.
(4)$|\overrightarrow{\mathrm{OA}}|=4,\ |\overrightarrow{\mathrm{OB}}|=3,\ \angle \text{AOB}=60^\circ$とする.$\mathrm{P}$が辺$\mathrm{AB}$の垂直二等分線上にあるとき,$s,\ t$の関係式を求めよ.
島根県立大学 公立 島根県立大学 2011年 第4問
次の問いに答えよ.

(1)次の$3$点$(-2,\ 16)$,$(1,\ 1)$,$(5,\ 9)$を通る放物線$C$をグラフとする$2$次関数を求めよ.
(2)点$\mathrm{A}(4,\ 0)$と放物線$C$上を動く点$\mathrm{P}$がある.このとき,線分$\mathrm{AP}$を$2:1$に外分する点$\mathrm{Q}$の軌跡の方程式を求めよ.
(3)点$\mathrm{Q}$の軌跡が描く曲線$D$と放物線$C$で囲まれる部分の面積を求めよ.
三重大学 国立 三重大学 2010年 第2問
四面体OABCは,$\text{OA}=\sqrt{5},\ \text{OB}=\text{OC}=5,\ \text{AB}=\text{AC}=\sqrt{30},\ \text{BC}=5\sqrt{2}$を満たすものとする.辺OBを$2:1$に外分する点をD,辺OCを$3:2$に外分する点をEとする.Oから直線DEに引いた垂線と直線BCとの交点をFとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{b} \cdot \overrightarrow{c},\ \overrightarrow{c} \cdot \overrightarrow{a}$を求めよ.
(2)$\overrightarrow{\mathrm{OF}}$と$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)線分OFの長さと線分AFの長さおよび$\cos \angle \text{OFA}$の値を求めよ.
スポンサーリンク

「外分」とは・・・

 まだこのタグの説明は執筆されていません。