タグ「外分」の検索結果

2ページ目:全36問中11問~20問を表示)
京都薬科大学 私立 京都薬科大学 2016年 第3問
次の$[ ]$にあてはまる式を記入せよ.

空間の異なる$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$に対して,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.線分$\mathrm{AB}$を$k:l$に内分する点を$\mathrm{C}$とおくと
\[ \overrightarrow{\mathrm{OC}}=[ア] \overrightarrow{a}+[イ] \overrightarrow{b} \]
と表される.また,線分$\mathrm{AB}$を$m:n (m>n)$に外分する点を$\mathrm{D}$とおくと
\[ \overrightarrow{\mathrm{OD}}=[ウ] \overrightarrow{a}+[エ] \overrightarrow{b} \]
と表される.さらに,$pm-qn \neq 0$をみたす正の数$p,\ q$について,$\overrightarrow{\mathrm{OA}^\prime}=p \overrightarrow{a}$,$\overrightarrow{\mathrm{OB}^\prime}=q \overrightarrow{b}$をみたす$2$点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$をとり,直線$\mathrm{OC}$,$\mathrm{OD}$がそれぞれ直線$\mathrm{A}^\prime \mathrm{B}^\prime$と交わる点を$\mathrm{C}^\prime$,$\mathrm{D}^\prime$とおくと$\overrightarrow{\mathrm{OC}^\prime}$,$\overrightarrow{\mathrm{OD}^\prime}$はそれぞれ
\[ \overrightarrow{\mathrm{OC}^\prime}=[オ] \overrightarrow{a}+[カ] \overrightarrow{b},\quad \overrightarrow{\mathrm{OD}^\prime}=[キ] \overrightarrow{a}+[ク] \overrightarrow{b} \]
と表される.よって,$\mathrm{C}^\prime$は線分$\mathrm{A}^\prime \mathrm{B}^\prime$を$[ケ]:[コ]$に内分する点で,$\mathrm{D}^\prime$は線分$\mathrm{A}^\prime \mathrm{B}^\prime$を$[サ]:[シ]$に外分する点である.
ここで,点$\mathrm{C}$が線分$\mathrm{AB}$を内分する比の値$\displaystyle \frac{k}{l}$と,点$\mathrm{D}$が線分$\mathrm{AB}$を外分する比の値$\displaystyle \frac{m}{n}$について,これら$2$つの比の商を
\[ c(\mathrm{A},\ \mathrm{B},\ \mathrm{C},\ \mathrm{D})=\frac{\displaystyle\frac{k}{l}}{\displaystyle\frac{m}{n}}=\frac{kn}{lm} \]
とおくとき,点$\mathrm{C}^\prime$が線分$\mathrm{A}^\prime \mathrm{B}^\prime$を内分する比の値と点$\mathrm{D}^\prime$が線分$\mathrm{A}^\prime \mathrm{B}^\prime$を外分する比の商$c(\mathrm{A}^\prime,\ \mathrm{B}^\prime,\ \mathrm{C}^\prime,\ \mathrm{D}^\prime)$は,$k,\ l,\ m,\ n$を用いると$[ス]$と表せる.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2016年 第1問
以下の$[ ]$にあてはまる適切な数を記入しなさい.

(1)どの位にも$0$を使わずに,でたらめに$4$桁の整数を作る.このとき,どの位の数字も異なる確率は$[ ]$である.
(2)円に内接する正三角形の面積が$27 \sqrt{3}$のとき,この円の半径は$[ ]$である.
(3)$\displaystyle \lim_{x \to -\infty} \left( 4x+3+\sqrt{16x^2+9} \right)=[ ]$である.

(4)$\displaystyle \frac{\sin {55}^\circ+\sin {175}^\circ+\sin {65}^\circ+\sin {185}^\circ}{\sin {50}^\circ+\cos {50}^\circ}$の値を求めると,$[ ]$である.

(5)$1$辺の長さが$1$の正方形$\mathrm{ABCD}$において,辺$\mathrm{AB}$の中点を$\mathrm{M}$,辺$\mathrm{BC}$を$3:1$に外分する点を$\mathrm{N}$とする.線分$\mathrm{MN}$と線分$\mathrm{BD}$の交点を$\mathrm{L}$とするとき,線分$\mathrm{AL}$の長さは$[ ]$である.
奈良県立医科大学 公立 奈良県立医科大学 2016年 第8問
$y$軸上に点$\mathrm{A}$,$x$軸上に点$\mathrm{B}$という異なる$2$点をとる.線分$\mathrm{AB}$を$a:b$に外分する点を$\mathrm{C}$とし,その座標を$(p,\ q)$とする.このとき$b^2p^2+a^2q^2$の値を$p,\ q$を用いずに表せ.
首都大学東京 公立 首都大学東京 2016年 第2問
数直線上に$2$点$\mathrm{Q}(-1)$と$\displaystyle \mathrm{P}_1 \left( \frac{1}{2} \right)$をとり,線分$\mathrm{QP}_1$を$3:1$に外分する点を$\mathrm{P}_2$,線分$\mathrm{QP}_2$を$3:1$に外分する点を$\mathrm{P}_3$とする.以下同様に$n=1,\ 2,\ \cdots$に対し線分$\mathrm{QP}_n$を$3:1$に外分する点を$\mathrm{P}_{n+1}$とする.また$\mathrm{P}_n$の座標を$a_n$とする.このとき,以下の問いに答えなさい.

(1)$\mathrm{A}$を数直線上の$\mathrm{Q}$と異なる点とする.線分$\mathrm{QA}$を$3:1$に外分する点が$\mathrm{P}_1$であるとき,$\mathrm{A}$の座標$a$を求めなさい.
(2)すべての自然数$n$に対して
\[ a_n=\left( \frac{3}{2} \right)^n-1 \]
が成り立つことを$n$に関する数学的帰納法で証明しなさい.
(3)$999<a_n<9999$をみたす自然数$n$をすべて求めなさい.ただし,本問では$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
県立広島大学 公立 県立広島大学 2016年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=2$,$\mathrm{OC}=4$,
\[ \angle \mathrm{AOB}=\frac{\pi}{2},\quad \angle \mathrm{AOC}=\frac{\pi}{3},\quad \angle \mathrm{BOC}=\frac{\pi}{3} \]
とする.また,線分$\mathrm{OA}$を$2:1$に外分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:2$に外分する点を$\mathrm{Q}$とする.線分$\mathrm{CQ}$,線分$\mathrm{CP}$の中点をそれぞれ$\mathrm{R}$,$\mathrm{S}$とし,直線$\mathrm{PR}$と直線$\mathrm{QS}$の交点を$\mathrm{T}$とする.さらに,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OT}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)点$\mathrm{T}$から平面$\mathrm{OAB}$に下ろした垂線を$\mathrm{TH}$とする.$\overrightarrow{\mathrm{HT}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)四面体$\mathrm{OABT}$の体積を求めよ.
神戸薬科大学 私立 神戸薬科大学 2015年 第9問
$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$5:2$に内分する点を$\mathrm{P}$,辺$\mathrm{AC}$を$7:2$に外分する点を$\mathrm{Q}$,直線$\mathrm{PQ}$と辺$\mathrm{BC}$の交点を$\mathrm{R}$とする.このとき,$\mathrm{BR}:\mathrm{CR}=[ネ]:[ノ]$であり,$\triangle \mathrm{BPR}$の面積は$\triangle \mathrm{ABC}$の面積の$[ハ]$倍である.
金沢工業大学 私立 金沢工業大学 2015年 第3問
平面上に異なる$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,それらは一直線上にないとする.このとき,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.線分$\mathrm{OA}$を$5:3$に内分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:1$に外分する点を$\mathrm{Q}$とする.また,線分$\mathrm{AB}$と線分$\mathrm{PQ}$の交点を$\mathrm{R}$とする.

(1)$\displaystyle \overrightarrow{\mathrm{OP}}=\frac{[ア]}{[イ]} \overrightarrow{a}$,$\displaystyle \overrightarrow{\mathrm{OQ}}=\frac{[ウ]}{[エ]} \overrightarrow{b}$である.

(2)$\displaystyle \overrightarrow{\mathrm{OR}}=\frac{[オ]}{[カキ]} \overrightarrow{a}+\frac{[ク]}{[ケコ]} \overrightarrow{b}$である.

(3)点$\mathrm{R}$は線分$\mathrm{AB}$を$[サ]:[シ]$に内分する.
富山県立大学 公立 富山県立大学 2015年 第2問
$\triangle \mathrm{OAB}$において,辺$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$の中点を$\mathrm{Q}$,線分$\mathrm{PQ}$を$2:1$に内分する点を$\mathrm{R}$とし,線分$\mathrm{OR}$の延長が辺$\mathrm{AB}$と交わる点を$\mathrm{S}$とする.このとき,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$として,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OS}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)線分$\mathrm{OQ}$を$3:2$に外分する点を$\mathrm{T}$とするとき,$3$点$\mathrm{P}$,$\mathrm{S}$,$\mathrm{T}$は一直線上にあることを示せ.
北海道大学 国立 北海道大学 2014年 第3問
$\triangle \mathrm{ABC}$を線分$\mathrm{BC}$を斜辺とする直角二等辺三角形とし,その外接円の中心を$\mathrm{O}$とする.正の実数$p$に対して,$\mathrm{BC}$を$(p+1):p$に外分する点を$\mathrm{D}$とし,線分$\mathrm{AD}$と$\triangle \mathrm{ABC}$の外接円との交点で$\mathrm{A}$と異なる点を$\mathrm{X}$とする.

(1)ベクトル$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{\mathrm{OC}}$,$p$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OX}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OC}}$,$p$を用いて表せ.
大阪薬科大学 私立 大阪薬科大学 2014年 第2問
次の問いに答えなさい.

$t$を実数とする.座標平面上の$2$次関数$y=f(x)$のグラフ$C$は,軸が$y$軸,頂点が原点$\mathrm{O}$の放物線であり,点$(-2,\ 1)$を通る.$C$上の点$\mathrm{P}(t,\ f(t))$における接線を$\ell$とし,点$\mathrm{Q}(-1,\ 0)$を通り,$\ell$と垂直な直線を$m$とする.

(1)$f(1)$の値は$[$\mathrm{E]$}$である.
(2)$\ell$の方程式を$t$を用いて表すと,$y=[$\mathrm{F]$}$である.
(3)$t$が$-1 \leqq t \leqq 1$の範囲を動くとき,線分$\mathrm{PQ}$を$1:2$に外分する点$\mathrm{G}$の軌跡を求め,またそれを図示しなさい.
(4)$m$が$C$の接線となるとき,$t=[$\mathrm{G]$}$である.このとき,$C$と$\ell$および$m$で囲まれる部分の面積は$[$\mathrm{H]$}$である.
スポンサーリンク

「外分」とは・・・

 まだこのタグの説明は執筆されていません。