タグ「変換」の検索結果

9ページ目:全117問中81問~90問を表示)
東京工業大学 国立 東京工業大学 2011年 第1問
$n$を自然数とする.$xy$平面上で行列$\left( \begin{array}{cc}
1-n & 1 \\
-n(n+1) & n+2
\end{array} \right)$の表す1次変換(移動ともいう)を$f_n$とする.以下の問に答えよ.

(1)原点O$(0,\ 0)$を通る直線で,その直線上のすべての点が$f_n$により同じ直線上に移されるものが2本あることを示し,この2直線の方程式を求めよ.
(2)(1)で得られた2直線と曲線$y = x^2$によって囲まれる図形の面積$S_n$を求めよ.
(3)$\displaystyle \sum_{n=1}^\infty \frac{1}{S_n-\frac{1}{6}}$を求めよ.
横浜国立大学 国立 横浜国立大学 2011年 第5問
$xy$平面上に直線$\ell$がある.行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$の表す1次変換$f$は,次の(i),(ii),(iii)を満たす.

\mon[(i)] 平面の点の$f$による像はすべて$\ell$上にある.
\mon[(ii)] $f$は$\ell$の点をすべて原点に移す.
\mon[(iii)] 点Pが円$x^2-2x+y^2-2y+1=0$上を動くとき,$f$によるPの像の$x$座標は最大値$1+\sqrt{5}$,最小値$1-\sqrt{5}$をとる.

次の問いに答えよ.

(1)$A$を求めよ.また$\ell$の方程式を求めよ.
(2)(iii)で最大値$1+\sqrt{5}$をとるときのPの座標を求めよ.
名古屋工業大学 国立 名古屋工業大学 2011年 第3問
$a$を定数とし,行列$A=\biggl( \begin{array}{cc}
a & 1 \\
1 & -a
\end{array} \biggr)$で表される1次変換を$f$とする.直線$\ell_1:x=-1$と円$C_1:(x-1)^2+(y-1)^2=1$を考える.$\ell_1$上の各点は$f$で直線$\ell_2$上に移り,$C_2$上の各点は$f$で2次曲線$C_2$上に移るとする.

(1)$\ell_2$の方程式を求めよ.
(2)$C_2$の方程式を求めよ.
(3)$C_1$と$C_2$の共有点がただ1点であるとき,$a$の値と共有点の座標を求めよ.
大阪教育大学 国立 大阪教育大学 2011年 第3問
座標平面上の円$x^2+y^2=1$を$C$とする.点Pが行列$A=\biggl( \begin{array}{cc}
1 & 1 \\
1 & 0
\end{array} \biggr)$で表される1次変換で点Qに移されるとき,次の問に答えよ.

(1)点Pが円$C$上を動くとき,点Qの軌跡を求め,図示せよ.
(2)(1)で求めた曲線で囲まれた図形の面積$S$を求めよ.
福井大学 国立 福井大学 2011年 第1問
以下の問いに答えよ.

(1)$\mathrm{O}$を原点とする座標平面上,直線$y=kx \ (k \text{は定数})$に関する対称移動を$f$で表す.また座標平面上の点$\mathrm{P}$に対して,直線$\mathrm{OP}$を$\mathrm{O}$を中心として角$\displaystyle \frac{\pi}{4}$だけ回転して得られる直線$\ell$に$\mathrm{P}$から下ろした垂線と$\ell$の交点を$\mathrm{Q}$とし,$\mathrm{P}$を$\mathrm{Q}$に移す移動を$g$で表す.ただし$\mathrm{O}$は$g$により$\mathrm{O}$自身に移動するものとする.$f,\ g$をこの順に続けて行って得られる移動(合成変換$g \circ f$)を表す行列を$A$とおくとき,$A$およびその逆行列$A^{-1}$を求めよ.
(2)2次の正方行列$M=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$に対して,$T(M)=a+d,\ D(M)=ad-bc$と定める.このとき以下の命題を証明せよ. \\
「すべての自然数$n$に対して$T(M^n)=\{T(M)\}^n$が成り立つことと,$D(M)=0$であることは,互いに同値である.」
岐阜大学 国立 岐阜大学 2011年 第5問
$a,\ b,\ c,\ d$を実数の定数とする.座標平面上の点$(2,\ 1)$を点$(5,\ 2)$に移す1次変換を表す行列を
\[ A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right) \]
とする.以下の問に答えよ.

(1)$A$が逆行列をもつための必要十分条件を$a$と$c$を用いて表せ.
(2)次の式を満たす$A$を求めよ.
\[ A^2=\left( \begin{array}{cc}
\displaystyle\frac{25}{4} & 0 \\
\displaystyle\frac{5}{2} & 0
\end{array} \right) \]
(3)$n$を自然数とする.(2)で求めた$A$について
\[ -\frac{2}{5}A+\left( -\frac{2}{5} \right)^2A^2+\left( -\frac{2}{5}\right)^3A^3+\cdots +\left( -\frac{2}{5} \right)^n A^n \]
を求めよ.
山梨大学 国立 山梨大学 2011年 第3問
弧度法で表された$\theta$に対し,$M(\theta)=\left( \begin{array}{cc}
\cos \theta & -\displaystyle\frac{1}{2}\sin \theta \\
2 \sin \theta & \cos \theta
\end{array} \right)$とし,楕円$\displaystyle x^2+\frac{y^2}{4}=1$を$C$とする.

(1)$M(\theta)$で表される$1$次変換により$C$上の点は$C$上の点に移ることを示せ.
(2)弧度法で表された$\alpha,\ \beta$は$\displaystyle 0<\alpha<\frac{\pi}{4}$,$\displaystyle 0<\beta<\frac{\pi}{4}$を満たしているとし,$M(\alpha)$で表される$1$次変換により点$(\cos \beta,\ 2 \sin \beta)$が移される点を$\mathrm{A}$とする.$\mathrm{A}$を通り$y$軸に平行な直線と$C$で囲まれる部分のうち,原点$\mathrm{O}$を含まない方の面積$S$を求めよ.
北海学園大学 私立 北海学園大学 2011年 第7問
座標平面上の点$(2,\ 1)$を点$(4,\ 7)$へ移す$1$次変換$f$を表す行列を$\left( \begin{array}{cc}
a & b \\
b & a+b
\end{array} \right)$とする.

(1)$a$と$b$の値をそれぞれ求めよ.
(2)$f$の逆変換を表す行列を求めよ.
(3)$f$が直線$y=mx$上の任意の点$(c,\ cm)$を再び$y=mx$上に移すとき,$m$の値を求めよ.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)$a,\ b$を実数($a \neq b$)とする.$2$つの$2$次関数
\[ y=x^2+ax+b,\quad y=x^2+bx+a \]
の最小値が同じであるとき,$a$を用いて$b$を表すと$b=[ア]$である.このとき,$2$つの$2$次関数のグラフの交点の座標は$[イ]$である.

(2)$2$つの行列$A=\left( \begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6
\end{array} \right)$,$B=\left( \begin{array}{cc}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array} \right)$の積$AB$を求めると$AB=[ウ]$である.$2$行$2$列の行列$C$で表される$1$次変換による$2$点$(1,\ 1)$,$(2,\ 3)$の像が,それぞれ,$(-3,\ 5)$,$(-8,\ 12)$であるとき,行列$C$を求めると$C=[エ]$である.
(3)$\alpha,\ \beta$は$0 \leqq \alpha < 2\pi$,$0 \leqq \beta < 2\pi$を満たす実数とし,$a=\cos \alpha$,$b=\cos \beta$とする.$A=\sin (\alpha+\beta) \sin (\alpha-\beta)$を$a$と$b$で表すと$A=[オ]$であり,$A$の値が$1$となるときの$\beta$の値は$\beta=[カ]$である.
(4)$k$を正の実数とする.直線$y=kx$と円$x^2+(y-3)^2=4$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとき,$k$の値の範囲は$[キ]$である.また,線分$\mathrm{PQ}$の長さが$2$となるのは,$k=[ク]$のときである.
(5)$5$人でじゃんけんを$1$回するとき,$1$人だけが勝つ確率$p$は$p=[ケ]$である.また,$5$人のじゃんけんを$1$人だけが勝つまで繰り返すとき,$n$回以内に$1$人だけが勝って終わる確率$q$を$n$を用いて表すと$q=[コ]$である.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)立方体の各面に$1$~$6$の目が$1$つずつ書かれたサイコロを$2$つ振って,出た目の大きくない方を$x$とする.$x=2$である確率は$\displaystyle \frac{[ア]}{[イ]}$である.$x$の期待値は$\displaystyle \frac{[ウ]}{[エ]}$である.
(2)$A=\left( \begin{array}{cc}
5 & 11 \\
3 & 7
\end{array} \right)$とする.行列$A$が表す$1$次変換により,点$(3,\ -2)$は点$([オ],\ [カ])$に移り,点$([キ],\ [ク])$は点$(3,\ 1)$に移る.
(3)$f(x)=x^3-9x^2+18x+9$とし,
\[ A=\{x \;|\; f(x)>0\},\quad B=\{x \;|\; x>-1\} \]
とする.次が成り立つ.
\[ 1 [あ] A,\quad 5 [い] A,\quad A [う] B \]
\begin{screen}
{\bf あ,い,うの選択肢:} \\
$(\mathrm{a}) \in \quad (\mathrm{b}) \not\in \quad (\mathrm{c}) \ni \quad (\mathrm{d}) \not\ni \quad (\mathrm{e}) \subset \quad (\mathrm{f}) \supset \quad (\mathrm{g}) =$
\end{screen}
また,正の整数$a$に対して,
\[ C=\{x \;|\; 0 \leqq x \leqq a\} \]
とする.$A \supset C$となる最も大きい整数$a$は$a=[ケ]$である.
スポンサーリンク

「変換」とは・・・

 まだこのタグの説明は執筆されていません。