タグ「変換」の検索結果

8ページ目:全117問中71問~80問を表示)
関西大学 私立 関西大学 2012年 第3問
$A=\left( \begin{array}{cc}
a & -b \\
b & a
\end{array} \right) (b \neq 0)$が表す$1$次変換を$f$とする.点$\mathrm{P}(c,\ 0) (c>0)$を考える.次の問いに答えよ.

(1)次の$[$①$]$から$[$④$]$を数値でうめよ.
点$\mathrm{Q}(3,\ 4)$を,点$\mathrm{R}(1,\ 2)$を中心として反時計まわりに$\displaystyle \frac{\pi}{3}$だけ回転した点の座標は
\[ \left( \begin{array}{rr}
\displaystyle \cos \frac{\pi}{3} & \displaystyle -\sin \frac{\pi}{3} \\ \\
\displaystyle \sin \frac{\pi}{3} & \displaystyle \cos \frac{\pi}{3}
\end{array} \right) \left( \begin{array}{c}
3-[$①$] \\ \\
4-[$②$]
\end{array} \right)+\left( \begin{array}{c}
[$①$] \\ \\
[$②$]
\end{array} \right) \]
を計算することにより,$([$③$],\ [$④$])$である.

(2)$B=\left( \begin{array}{rr}
\displaystyle \cos \frac{\pi}{3} & \displaystyle -\sin \frac{\pi}{3} \\
\displaystyle \sin \frac{\pi}{3} & \displaystyle \cos \frac{\pi}{3}
\end{array} \right)$,$V=\left( \begin{array}{c}
c \\
0
\end{array} \right)-A \left( \begin{array}{c}
c \\
0
\end{array} \right)$,$O=\left( \begin{array}{c}
0 \\
0
\end{array} \right)$とおく.

点$\mathrm{P}$を,点$f(\mathrm{P})$を中心として反時計まわりに$\displaystyle \frac{\pi}{3}$だけ回転した点が$(f \circ f)(\mathrm{P})$と一致するという条件を$A,\ B,\ V,\ O$を用いて表すと,$([$⑤$])V=O$と表すことができる.$A$と$B$を用いて$[$⑤$]$をうめよ.
(3)$3$点$\mathrm{P}$,$f(\mathrm{P})$,$(f \circ f)(\mathrm{P})$が正三角形の$3$つの頂点をなすとき,$a,\ b$の値を求めよ.
(4)$(3)$の正三角形の$1$辺の長さが$1$になるとき,$c$の値を求めよ.
近畿大学 私立 近畿大学 2012年 第3問
$a,\ b$を実数とし,行列$A=\left( \begin{array}{cc}
2 & a \\
b & 2
\end{array} \right)$で表される$1$次変換$f$と$\mathrm{P}(1,\ 0)$を考える.$1$次変換$f$と$f^2=f \circ f$による$\mathrm{P}$の像をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.

(1)$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$が$\mathrm{QR}$を斜辺とする直角三角形の頂点となる必要十分条件は
\[ ab+[ア]b^2+[イ]=0 \]
である.この条件のもとで$a$のとる正の値の最小値は$[ウ] \sqrt{[エ]}$である.
(2)$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$が$\mathrm{QR}$を斜辺とする直角二等辺三角形の頂点となる必要十分条件は
\[ (a,\ b)=\left( [オカ],\ -\frac{[キ]}{[ク]} \right) \quad \text{または} \quad (a,\ b)=\left( -[ケコ],\ \frac{[サ]}{[シ]} \right) \]
である.
杏林大学 私立 杏林大学 2012年 第1問
$[カ]$,$[キ]$の解答はそれぞれの解答群の中から最も適当なものを$1$ずつ選べ.

袋の中に,$1$から$13$までの数字が書かれたカードが$1$枚ずつ入っている.この袋から$3$枚のカードを同時に取り出して,カードに書かれた数字を小さい方から順に$x,\ y,\ z$と定め,カードを袋に戻すという操作を行う.このような操作によって取りうるすべての整数の組$(x,\ y,\ z)$を,重複なく集めてできる集合
\[ U=\{ (x,\ y,\ z) \;|\; x,\ y,\ z \text{はカードを取り出して定められる数} \} \]
を全体集合と定める.また,集合$U$の部分集合$P,\ Q$をそれぞれ
$P=\{ (x,\ y,\ z) \;|\; z>x+y,\ (x,\ y,\ z) \in U \},$
$Q=\{ (x,\ y,\ z) \;|\; z<x+y,\ (x,\ y,\ z) \in U \}$
とする.

(1)集合$U$の要素の個数は$[アイウ]$である.また,$\overline{P} \cap \overline{Q}$に含まれる要素の個数は$[エオ]$である.
(2)集合$U$の要素$(x,\ y,\ z)$を
\[ \left\{ \begin{array}{l}
x^\prime=z-y \\
y^\prime=z-x \\
z^\prime=z
\end{array} \right. \]
で表わされる$(x^\prime,\ y^\prime,\ z^\prime)$に移す変換を$f$とする.このとき,集合$P$の要素$p$の変換$f$による像$p^\prime$は$p^\prime [カ]$を満たし,$p^\prime$の変換$f$による像$p^{\prime\prime}$は$p^{\prime\prime} [キ]$となる.
また,集合$Q$の要素の個数は$[クケコ]$である.

$[カ]$の解答群
\[ \begin{array}{lll}
① \in P \phantom{AAA} & ② \in Q & ③ \in \overline{P} \\
④ \in \overline{Q} & ⑤ \in \overline{P} \cap \overline{Q} \phantom{AAA} & ⑥ \not\in U
\end{array} \]
$[キ]$の解答群
\[ \begin{array}{llll}
① \in Q \phantom{AAA} & ② \in \overline{P} \phantom{AAA} & ③ \in \overline{Q} \phantom{AAA} & ④ \in \overline{P} \cap \overline{Q} \\
⑤ \not\in U & ⑥ =p & ④chi =p^\prime &
\end{array} \]
(3)$3$辺の長さがそれぞれ$x,\ y,\ z$である直角三角形を作ることができる$(x,\ y,\ z)$の組は$[サ]$通りある.また,$z=13$の場合,$3$辺の長さが$x,\ y,\ z$である鋭角三角形を作ることができる$(x,\ y,\ z)$の組は$[シス]$通りである.
大阪府立大学 公立 大阪府立大学 2012年 第3問
行列$A,\ B$を$A=\biggl( \begin{array}{cc}
a-b & -b \\
b & a+b
\end{array} \biggr),\ B=\biggl( \begin{array}{cc}
-b & -b \\
b & b
\end{array} \biggr)$によって定める.ただし,$a,\ b$は定数で$b \neq 0$とする.行列$A$および$B$で表される1次変換をそれぞれ$f,\ g$とする.また,点P$(1,\ 2)$の$g$による像をQとし,点Pを通り,方向ベクトルが$\overrightarrow{\mathrm{OQ}}$である直線を$\ell$とする.ただし,Oは原点を表す.

(1)点Qの$g$による像を求めよ.
(2)点Pの$f$による像Rが直線$\ell$上にあれば,$a=1$であることを示せ.
(3)$a=1$のとき,直線$\ell$上のすべての点は$f$により$\ell$上に移ることを示せ.
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第6問
以下の問いに答えよ.

(1)$2$つの行列$M=\left( \begin{array}{cc}
p & q \\
r & s
\end{array} \right)$と$N=\left( \begin{array}{cc}
p & r \\
q & s
\end{array} \right)$が,
\[ M \left( \begin{array}{cc}
0 & -1 \\
1 & 0
\end{array} \right) N= \left( \begin{array}{cc}
0 & -1 \\
1 & 0
\end{array} \right) \]
をみたすのは,$p,\ q,\ r,\ s$の間にどのような関係が成り立つときか.
(2)行列$M=\left( \begin{array}{cc}
p & q \\
r & s
\end{array} \right)$が,(1)で求めた関係をみたしているとする.行列$M$の表す$1$次変換による,点$\mathrm{A}(q,\ -p)$の像を点$\mathrm{C}$,点$\mathrm{B}(s,\ -r)$の像を点$\mathrm{D}$とする.座標平面の原点を$\mathrm{O}$とするとき,三角形$\mathrm{OCD}$の面積を求めよ.
名古屋市立大学 公立 名古屋市立大学 2012年 第3問
$2$つのベクトルを$\overrightarrow{a}=(2,\ 1)$,$\overrightarrow{b}=(1,\ 3)$とおく.平面上の任意のベクトル$\overrightarrow{w}=(x,\ y)$を$\overrightarrow{w}=k \overrightarrow{a}+l \overrightarrow{b}$と表すとき,次の問いに答えよ.

(1)$k,\ l$を$x,\ y$で表せ.
(2)$(1)$の$k,\ l$に対して,点$\mathrm{W}(\overrightarrow{w})$を点$\mathrm{U}(k \overrightarrow{a})$へ移す変換を$f$,点$\mathrm{W}(\overrightarrow{w})$を点$\mathrm{V}(l \overrightarrow{b})$へ移す変換を$g$とするとき,$2$つの変換$f,\ g$を表す行列$P,\ Q$を求めよ.
(3)行列$PQ$,$QP$,$P^2$,$Q^2$を求めよ.
(4)行列$R$が$R=sP+tQ$と表されるとき,自然数$n$に対して$R^n$を類推し,それが正しいことを数学的帰納法で証明せよ.ただし,$s,\ t$は実数とする.
北九州市立大学 公立 北九州市立大学 2012年 第4問
行列$A=\left( \begin{array}{cc}
2 & 1 \\
3 & -2
\end{array} \right)$が表す$1$次変換を$f$とする.以下の問いに答えよ.

(1)行列$A$の逆行列$A^{-1}$を求めよ.
(2)点$\mathrm{P}(a,\ b)$が$1$次変換$f$によって移される点$\mathrm{P}^\prime$の座標を求めよ.
(3)直線$3x-y=2$が$1$次変換$f$によって移される直線を求めよ.
(4)$y=3x$に関する対称移動$g$は$1$次変換であることを示し,$g$を表す行列を求めよ.
京都大学 国立 京都大学 2011年 第2問
$a,\ b,\ c$を実数とし,$\mathrm{O}$を原点とする座標平面上において,行列$\left(
\begin{array}{ccc}
a & 1 \\
b & c
\end{array}
\right)$に
よって表される$1$次変換を$T$とする.この$1$次変換$T$が$2$つの条件

(1)点$(1,\ 2)$を点$(1,\ 2)$に移す
(2)点$(1,\ 0)$と点$(0,\ 1)$が$T$によって点$\mathrm{A}$,$\mathrm{B}$にそれぞれ移るとき,$\triangle \mathrm{OAB}$の面積が$\displaystyle\frac{1}{2}$である

を満たすとき,$a,\ b,\ c$を求めよ.
東北大学 国立 東北大学 2011年 第6問
行列
\[ A=\left( \begin{array}{cc}
3 & -1 \\
4 & -1
\end{array} \right) \]
の表す1次変換を$f$とする.$f$による点P$(1,\ 1)$の像をP$_1$とする.正の整数$n$に対し,P$_n$の$f$による像をP$_{n+1}$とする.P$_n$が点Q$(10,\ 10)$に最も近くなるときの$n$の値を求めよ.
大阪大学 国立 大阪大学 2011年 第1問
$a$を自然数とする.$\mathrm{O}$を原点とする座標平面上で行列$A=\left( \begin{array}{cc}
a & -1 \\
1 & a
\end{array} \right)$の表す$1$次変換を$f$とする.

(1)$r>0$および$0 \leqq \theta < 2\pi$を用いて$A=\left( \begin{array}{cc}
r \cos \theta & -r \sin \theta \\
r \sin \theta & r \cos \theta
\end{array} \right)$と表すとき,$r,\ \cos \theta,\ \sin \theta$を$a$で表せ.
(2)点$\mathrm{Q}(1,\ 0)$に対し,点$\mathrm{Q}_n (n = 1,\ 2,\ 3)$を
\[ \mathrm{Q}_1 = \mathrm{Q},\quad \mathrm{Q}_{n+1} = f(\mathrm{Q}_n) \]
で定める.$\triangle \mathrm{OQ}_n \mathrm{Q}_{n+1}$の面積$S(n)$を$a$と$n$を用いて表せ.
(3)$f$によって点$(2,\ 7)$に移されるもとの点$\mathrm{P}$の$x$座標の小数第一位を四捨五入して得られる近似値が$2$であるという.自然数$a$の値を求めよ.またこのとき$S(n)>{10}^{10}$となる最小の$n$の値を求めよ.ただし$0.3 < \log_{10}2 < 0.31$を用いてよい.
スポンサーリンク

「変換」とは・・・

 まだこのタグの説明は執筆されていません。