タグ「変換」の検索結果

7ページ目:全117問中61問~70問を表示)
旭川医科大学 国立 旭川医科大学 2012年 第2問
$C_1$を中心$(0,\ 0)$,半径$1$の円とし,$C_2$を中心$(0,\ 0)$,半径$r>1$の円とする.$ad-bc>0$を満たす行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$で表される$1$次変換により円$C_1$が円$C_2$に移るとする.次の問いに答えよ.

(1)$a^2+c^2=b^2+d^2=r^2,\ ab+cd=0$が成り立つことを示せ.
(2)$a=r \cos \theta,\ c=r \sin \theta \ (\theta \text{は実数})$とおくとき,$b,\ d$を$r,\ \theta$を用いて表せ.
(3)$B=\displaystyle\frac{1}{r} \left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$とする.また,$C_1$に外接し,$C_2$に内接する$8$個の相異なる円$S_1,\ S_2,\ \cdots,\ S_8$が次の$3$条件$(ⅰ),\ (ⅱ),\ (ⅲ)$を満たしているとする.このとき,$r$を求めよ.

(i) 行列$B$で表される$1$次変換により$S_i \ (i=1,\ 2,\ \cdots,\ 7)$は$S_{i+1}$に,$S_8$は$S_1$に移る.
(ii) $S_{i+1} \ (i=1,\ 2,\ \cdots,\ 7)$は$S_i$に外接し,$S_8$は$S_1$にも外接する.
(iii) $S_1$は$S_3,\ S_4,\ \cdots, S_7$と交わらない.
愛知教育大学 国立 愛知教育大学 2012年 第6問
$0 \leqq a \leqq 1$をみたす$a$に対して$A=\left( \begin{array}{cc}
\sqrt{1-a^2} & -a \\
a & \sqrt{1-a^2}
\end{array} \right)$とし,$A$の表す$1$次変換によって,平面上の点$(1,\ 1)$が,直線$y=\sqrt{3}x$上の点に移されるとする.このとき以下の問いに答えよ.

(1)$a$の値を求めよ.

以下,$a$は$(1)$で求めた値とする.

\mon[$(2)$] $A^2$を求めよ.
\mon[$(3)$] $A^{2012}$を求めよ.
東京農工大学 国立 東京農工大学 2012年 第1問
$a,\ b$は実数で$b>0$とする.行列
\[ A=\left( \begin{array}{cc}
a & b \\
-b & 1-a
\end{array} \right),\quad B=\left( \begin{array}{cc}
0 & 1 \\
1 & 0
\end{array} \right) \]
が$ABAB=E$を満たしている.ただし$E$は2次の単位行列とする.次の問いに答えよ.

(1)$b$を$a$の式で表せ.
(2)$n$を自然数とする.$A^n=E$を満たす最小の$n$を求めよ.
(3)座標平面上において,$a=2$のとき行列$A$の表す1次変換を$f$とおく.点$\mathrm{P}(1,\ 1)$が$f$によって移る点を$\mathrm{Q}$とし,$\mathrm{Q}$が$f$によって移る点を$\mathrm{R}$とする.このとき$\triangle \mathrm{PQR}$の面積$S$を求めよ.
福井大学 国立 福井大学 2012年 第4問
行列$A=\left( \begin{array}{cc}
2 & -3 \\
3 & 2
\end{array} \right)$で表される1次変換を$f$とする.$f$によって,点$\mathrm{P}_0(1,\ 0)$が移る点を$\mathrm{P}_1(x_1,\ y_1)$,正の整数$n$に対して点$\mathrm{P}_n(x_n,\ y_n)$が移る点を$\mathrm{P}_{n+1}(x_{n+1},\ y_{n+1})$とする.原点を$\mathrm{O}$として,以下の問いに答えよ.

(1)$\cos \angle \mathrm{P}_n \mathrm{OP}_{n+1}$の値を求めよ.
(2)2以上の整数$n$で,直線$\mathrm{OP}_n$が線分$\mathrm{P}_0 \mathrm{P}_1$と交わる最小の$n$を求めよ.
(3)$i$を虚数単位とする.0でない整数$n$に対して,実数$a_n,\ b_n$を$(2+3i)^n=a_n+b_ni$により定める.このとき次の等式
\[ A^n=\left( \begin{array}{cc}
a_n & -b_n \\
b_n & a_n
\end{array} \right) \]
が0でないすべての整数$n$に対して成り立つことを証明せよ.ただし,正の整数$m$に対し$A^{-m}=(A^m)^{-1}$とする.
豊橋技術科学大学 国立 豊橋技術科学大学 2012年 第1問
座標平面上の点を,原点のまわりに角$\theta$だけ回転移動させる一次変換を表す$2$行$2$列の行列を$A$とする.以下の問いに答えよ.

(1)座標平面上の点$\mathrm{P}_0(a,\ b)$が$A$によって変換された点を点$\mathrm{P}_1$とする.$2$点$\mathrm{P}_0$,$\mathrm{P}_1$の間の長さを求めよ.
(2)$A^n=E$となる条件を示せ.ただし,$n$は$2$以上の整数,$0 \leqq \theta \leqq \pi$,$E$は単位行列とする.
(3)座標平面上の点$\mathrm{P}_0(a,\ b)$が$A$によって$l$回変換された点を点$\mathrm{P}_l$とする.点$\mathrm{P}_0$が$A$によって$n$回変換されると,原点の周りを$1$周して元の点$\mathrm{P}_0$に戻るとする.$n$個の点$\mathrm{P}_0$,$\mathrm{P}_1$,$\cdots$,$\mathrm{P}_{n-1}$で囲まれた$n$角形の面積$S_n$を求めよ.また,$\displaystyle \lim_{x \to 0}\frac{\sin x}{x}=1$を用いて,$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(4)座標平面上の点を,原点からの方向を変えずに距離を$k$倍する一次変換を表す$2$行$2$列の行列を$B$とする.座標平面上の点$\mathrm{Q}_{i-1}$が一次変換$AB$によって点$\mathrm{Q}_i$に移るとする.点$\mathrm{Q}_0$を$(c_0,\ d_0)$とするとき,$2$点$\mathrm{Q}_{i-1}$,$\mathrm{Q}_i$の間の長さ$m_i$を$k,\ \theta,\ c_0,\ d_0$を用いて表せ.
東京理科大学 私立 東京理科大学 2012年 第2問
$\mathrm{O}$を原点とする座標平面において,点$(1,\ 1)$を点$(5,\ 5)$に,点$(1,\ -7)$を点$(-3,\ 21)$に移す$1$次変換を$f$とする.$f$による点$\mathrm{P}$の像を点$\mathrm{Q}$とするとき,$\mathrm{P}$に対して内積の条件
\[ \overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{PQ}}=0 (*) \]
を考える.

(1)$f$を表す行列を求めよ.
(2)条件$(*)$を満たす点$\mathrm{P}(x,\ y)$の軌跡は$2$直線となる.この$2$直線の方程式を求めよ.
実数$a \geqq 0$に対して,
「点$(a,\ 0)$を中心とする半径$1$の円周上の点$\mathrm{P}$で,条件$(*)$を満たすものがちょうど$2$つある」 $(**)$
とする.この$2$点を$\mathrm{P}_1(x_1,\ y_1)$,$\mathrm{P}_2(x_2,\ y_2)$とするとき,$i=1,\ 2$に対して,$\mathrm{P}_i$の$f$による像を$\mathrm{Q}_i$とし,$\triangle \mathrm{OP}_i \mathrm{Q}_i$の面積を$S_i$とする.
(3)上の条件$(**)$を満たす$a$の値の範囲を求めよ.
(4)$S_i$を$y_i$を用いて表せ.また,和$S_1+S_2$の値を$a$を用いて表せ.
中央大学 私立 中央大学 2012年 第1問
次の問に答えよ.

(1)$a>0$,$a \neq 1$,$M>0$とする.$a$を底とする$M$の対数$\log_aM$の定義を述べよ.

(2)$(1)$で述べた定義に基づいて底の変換公式$\displaystyle \log_aM=\frac{\log_bM}{\log_ba}$を証明せよ.ただし,$a,\ b,\ M$は正の実数で,$a \neq 1$,$b \neq 1$である.
(3)$m \log_3p+n \log_9q=2$を満たす正の整数$m,\ n$が存在するような正の整数の組$(p,\ q)$をすべて求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
以下の文章の空欄に適切な数,式または行列を入れて文章を完成させなさい.ただし$(2)$において,適切な行列が複数個ある場合は,それらをすべて記入しなさい.

(1)$a_1=1$,$a_2=4$,$a_{n+2}=-a_{n+1}+2a_n (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$の一般項は$a_n=[あ]$である.
(2)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の表す$1$次変換により点$\mathrm{B}(1,\ 1)$と点$\mathrm{C}(1,\ 0)$はそれぞれ点$\mathrm{B}^\prime$と点$\mathrm{C}^\prime$に移されるとする.また$\mathrm{O}(0,\ 0)$を原点とする.$\overrightarrow{\mathrm{OB}^\prime}=2 \overrightarrow{\mathrm{OB}}$,かつ$\triangle \mathrm{OB}^\prime \mathrm{C}^\prime$が正三角形となるような行列$A$をすべて求めると$A=[い]$である.
(3)媒介変数$t$を用いて
\[ \left\{ \begin{array}{l}
x=\displaystyle \frac{e^t+3e^{-t}}{2} \\ \\
y=e^t-2e^{-t}
\end{array} \right. \]
と表される曲線$C$の方程式は
\[ [う]x^2+[え]xy+[お]y^2=25 \]
である.
また曲線$C$の接線の傾きは,$t=[か]$に対応する点において$-2$となる.
(4)$\alpha>1$を実数とする.$0 \leqq x \leqq 1$を定義域とする関数$f(x)=x-x^\alpha$が最大値をとる点を$x(\alpha)$とすると$x(\alpha)=[き]$である.また$\displaystyle \lim_{\alpha \to 1+0} x(\alpha)=[く]$である.
東京理科大学 私立 東京理科大学 2012年 第2問
以下の問いに答えなさい.

(1)関数$\displaystyle f(x)=\frac{1}{3} \cos 3x-\frac{1}{2} \cos 2x+\cos x (0<x<\pi)$について考える.

(i) $\displaystyle x=\frac{\pi}{12}$のとき,$f(x)$の値$\displaystyle f \left( \frac{\pi}{12} \right)$を求めなさい.
(ii) 関数$f(x)$の極値を求めなさい.

(2)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$によって表される座標平面上の点の移動($1$次変換)$f$が条件

「点$\mathrm{P}(x,\ y)$が直線$y=-x+1$上にあるとき,点$\mathrm{P}(x,\ y)$の$f$による像$\mathrm{P}^\prime(x^\prime,\ y^\prime)$はつねに直線$\displaystyle y=-\frac{2}{3}x+\frac{7}{3}$上にある.また,点$\mathrm{P}(x,\ y)$が直線$y=2x-1$上にあるとき,点$\mathrm{P}(x,\ y)$の$f$による像$\mathrm{P}^\prime(x^\prime,\ y^\prime)$はつねに直線$x=1$上にある」

を満たすとき,$A$を求めなさい.
金沢工業大学 私立 金沢工業大学 2012年 第5問
座標平面上において直線$y=2x$を$\ell$とし,この直線$\ell$に関して対称な$2$点$\mathrm{P}(x,\ y)$,$\mathrm{Q}(u,\ v)$をとる.

(1)直線$\mathrm{PQ}$は直線$\ell$に垂直であるから
\[ v-y=\frac{[アイ]}{[ウ]} (u-x) \qquad \cdots\cdots① \]
が成り立つ.
(2)点$\mathrm{P}$と点$\mathrm{Q}$の中点は直線$\ell$上にあるから
\[ v+y=[エ](u+x) \qquad \cdots\cdots② \]
が成り立つ.
(3)等式$①$と$②$より,$x,\ y$と$u,\ v$の間に関係
\[ \left( \begin{array}{c}
u \\
v
\end{array} \right)=\frac{1}{[オ]} \left( \begin{array}{cc}
[カキ] & [ク] \\
[ケ] & [コ]
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right) \qquad \cdots\cdots③ \]
が成り立つ.
(4)$1$次変換$③$を表す行列を$A$とすると,
\[ A^2=\left( \begin{array}{cc}
[サ] & [シ] \\
[ス] & [セ]
\end{array} \right),\quad A^{-1}=\frac{1}{[ソ]} \left( \begin{array}{cc}
[タチ] & [ツ] \\
[テ] & [ト]
\end{array} \right) \]
である.
スポンサーリンク

「変換」とは・・・

 まだこのタグの説明は執筆されていません。