タグ「変換」の検索結果

5ページ目:全117問中41問~50問を表示)
昭和大学 私立 昭和大学 2013年 第3問
次の各問に答えよ.

(1)双曲線$\displaystyle H:\frac{x^2}{16}-\frac{y^2}{9}=1$について,次の問に答えよ.

(i) 双曲線$H$の焦点の座標を求めよ.
(ii) 双曲線$H$について正の傾きをもつ漸近線の方程式を求めよ.
(iii) $(ⅱ)$で求めた漸近線と直交する直線が$H$と接するとき,その接点の座標を求めよ.

(2)不等式$9a>b,\ \log_ab>\log_ba^4+3$をすべて満たす整数$a,\ b$の値を求めよ.
(3)直線$x-y+2=0$を$\ell$とし,直線$x+y-3=0$を$m$とする.$1$次変換$f$によって,直線$\ell$は$m$に移り,また直線$m$は$\ell$に移る.このとき,次の問に答えよ.

(i) $1$次変換$f$を表す行列$A$を求めよ.
(ii) $A^{2013}$を求めよ.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第4問
$a,\ d$は$ad \neq 0$をみたす実数とする.$\mathrm{O}$を原点とする座標平面上において,行列$A=\left( \begin{array}{cc}
a & -1 \\
0 & d
\end{array} \right)$の表す$1$次変換(移動)を$f$とし,以下の$2$つの条件をみたす直線$\ell$がただ$1$つ存在するときを考える.

$(ⅰ)$ $\ell$は$\mathrm{O}$を通る.
$(ⅱ)$ $f$によって,$\ell$上の点はすべて$\ell$と垂直に交わるある直線$m$上に移される.

このとき,次の問いに答えよ.

(1)$a$と$d$の関係式を求めよ.
(2)$d>0$とする.$\ell$上に$\mathrm{O}$からの距離が$1$で$x$座標が正となる点$\mathrm{P}$をとり,$\mathrm{P}$の$f$による像を$\mathrm{Q}$とする.線分$\mathrm{OQ}$の長さを求めよ.また,直線$\mathrm{PQ}$と$y$軸が交わる点を$\mathrm{R}$とするとき,線分$\mathrm{OR}$の長さが最小となるように$a$と$d$の値を定めよ.
同志社大学 私立 同志社大学 2013年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)行列$A=\left( \begin{array}{cc}
\cos \alpha & \sin \alpha \\
\sin \alpha & -\cos \alpha
\end{array} \right)$と$B=\left( \begin{array}{cc}
\cos \beta & \sin \beta \\
\sin \beta & -\cos \beta
\end{array} \right) (0<\beta<\alpha<2\pi)$の積$AB$の$(1,\ 1)$成分は$\theta=\alpha-\beta$を用いて表すと$[ ]$となり,$(1,\ 2)$成分は$\theta$を用いて表すと$[ ]$となる.ここで点$\mathrm{P}_1(\sqrt{2},\ \sqrt{2})$が$AB$で表される$1$次変換によって点$\displaystyle \mathrm{P}_2 \left( \frac{\sqrt{6}-\sqrt{2}}{2},\ \frac{\sqrt{6}+\sqrt{2}}{2} \right)$に移るとすると$\theta=[ ]$となる.このとき,${(AB)}^{25}$で表される$1$次変換によって点$\mathrm{P}_1$が移る点の$x$座標は$[ ]$となり,$((AB)^{-1})^{2013}$で点$\mathrm{P}_1$が移る点の$x$座標は$[ ]$となる.
(2)関数$f(x)=(ax^2+bx)e^{-x^2}$は$\displaystyle x=\frac{1}{2}$で極大値$1$をとるとする.このとき,$a=[ ]$,$b=[ ]$であり,$f(x)>0$を満たす範囲は$0<x<[ ]$となる.この区間で関数$g(x)=\log f(x)$を考える.曲線$C:y=g(x)$の点$\displaystyle \left( 1,\ -\frac{3}{4} \right)$における接線の方程式は$y=[ ]$となり,曲線$C$と直線$y=k$が共有点をもたない$k$の値の範囲は$[ ]$となる.
杏林大学 私立 杏林大学 2013年 第2問
動点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$は,時刻$t=0$においてすべて点$\mathrm{A}(3,\ 0)$にあり,原点$\mathrm{O}(0,\ 0)$を中心とする半径$3$の円周上を反時計まわりに移動する.時刻$t$において$\angle \mathrm{AOP}=t$,$\angle \mathrm{AOQ}=2t$,$\angle \mathrm{AOR}=3t$である.以下,$t$は$0<t<\pi$を満たすものとする.

(1)時刻$t$において,三角形$\mathrm{PQR}$の面積$S$は,
\[ S=[ア] \sin t-\frac{[イ]}{[ウ]} \sin \left( [エ] t \right) \]
と表わせる.面積$S$は$\displaystyle t=\frac{[オ]}{[カ]} \pi$のとき最大値$\displaystyle \frac{[キク]}{[ケ]} \sqrt{[コ]}$をとる.

(2)点$\mathrm{R}$から直線$\mathrm{PQ}$に下ろした垂線の足を$\mathrm{H}$とする.時刻$t$において,行列
$\left( \begin{array}{cc}
\cos \displaystyle\frac{3}{2}t & \sin \displaystyle\frac{3}{2}t \\
-\sin \displaystyle\frac{3}{2}t & \cos \displaystyle\frac{3}{2}t
\end{array} \right)$で表わされる$1$次変換により,点$\mathrm{H}$は
\[ \left( 3 \cos \left( \frac{[サ]}{[シ]} t \right),\ 3 \sin \left( \frac{[ス]}{[セ]} t \right) \right) \]
に移動する.$\mathrm{OH}^2$は$\displaystyle \cos t=\frac{\sqrt{[ソ]}}{[タ]}$を満たす時刻$t$において最大値$[チ]+[ツ] \sqrt{[テ]}$をとる.
(3)時刻$t$の変化にともない,線分$\mathrm{PR}$の中点が描く軌跡を$C$とする.点$\mathrm{O}$を極とし,半直線$\alpha \overrightarrow{\mathrm{OA}} (\alpha \geqq 0)$を始線としたとき,曲線$C$の極方程式は,極座標$(r,\ \theta)$を用いて
\[ r=[ト] \cos \left( \frac{[ナ]}{[ニ]} \theta \right) \]
と表わされる.
公立はこだて未来大学 公立 公立はこだて未来大学 2013年 第7問
行列$C=\left( \begin{array}{cc}
0 & \displaystyle\frac{1}{2} \\
-\displaystyle\frac{1}{2} & 0
\end{array} \right)$について,以下の問いに答えよ.

(1)座標平面上の原点$\mathrm{O}$とは異なる点$\mathrm{A}$が,$C$の表す$1$次変換によって点$\mathrm{B}$に移されたとする.線分$\mathrm{OA}$の長さを$|\mathrm{OA|}$,線分$\mathrm{OB}$の長さを$|\mathrm{OB|}$とするとき,$\displaystyle \frac{|\mathrm{OB|}}{|\mathrm{OA|}}$を求めよ.また,$2$つのベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を求めよ.
(2)$C,\ C^2,\ \cdots,\ C^n$の表す$n$個($n \geqq 2$)の$1$次変換によって,座標平面上の点$\mathrm{P}_0$がそれぞれ点$\mathrm{P}_1,\ \mathrm{P}_2,\ \cdots,\ \mathrm{P}_n$に移されるとする.点$\mathrm{P}_0$の座標が$(1,\ 1)$であるとき,線分$\mathrm{P}_0 \mathrm{P}_1$,線分$\mathrm{P}_1 \mathrm{P}_2$,$\cdots$,線分$\mathrm{P}_{n-1} \mathrm{P}_n$の長さの総和を$L_n$とする.$\displaystyle \lim_{n \to \infty}L_n$を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2013年 第4問
$2$点$(2,\ 1)$,$(1,\ 1)$をそれぞれ$(3,\ -8)$,$(2,\ -5)$に移す$1$次変換を$f$とするとき,次の問いに答えよ.

(1)$f$を表す行列$A$を求めよ.
(2)$A^2,\ A^3$を求めよ.
(3)$A+A^2+A^3+\cdots +A^n$を求めよ.ただし,$n$は正の整数とする.
北九州市立大学 公立 北九州市立大学 2013年 第4問
行列$A=\left( \begin{array}{cc}
3 & 1 \\
1 & 2
\end{array} \right)$について,以下の問いに答えよ.ただし,$E$と$O$はそれぞれ$2$次の単位行列と零行列である.答えを導く過程も示すこと.

(1)行列$A$に対して,等式$A^2-5A+5E=O$が成り立つことを示せ.
(2)行列$B$について,$B=A^4-3A^3-3A^2+2A+9E$のとき,行列$B$を求めよ.
(3)行列$A$の表す$1$次変換によって,直線$2x-y+1=0$上の点を移す.このとき,像を表す図形の方程式を求めよ.
名古屋市立大学 公立 名古屋市立大学 2013年 第2問
逆行列をもつ行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$によって表される$1$次変換を考える.以下の問いに答えよ.

(1)この変換によって$xy$平面上の任意の$2$点$\mathrm{P}(x_1,\ y_1)$および$\mathrm{Q}(x_2,\ y_2)$がそれぞれ$\mathrm{P}^\prime ({x_1}^\prime,\ {y_1}^\prime)$および$\mathrm{Q}^\prime ({x_2}^\prime,\ {y_2}^\prime)$に移されるとき,$2$点間の距離が変換によって変化しない,つまり,$|\overrightarrow{\mathrm{PQ}}|^2=|\overrightarrow{\mathrm{P}^\prime \mathrm{Q}^\prime}|^2$であるための必要十分条件は,
\[ A^\mathrm{T}A=E \qquad \cdots\cdots (*) \]
であることを示せ.ただし,$A^\mathrm{T}$は$A$の行と列を入れ替えた行列要素をもつ行列,すなわち,
\[ A^\mathrm{T}=\left( \begin{array}{cc}
a & c \\
b & d
\end{array} \right) \]
である.また,$E$は単位行列である.
(2)原点のまわりの回転移動および$x$軸に関する対称移動の$1$次変換を,それぞれ,$f$および$g$とする.これらの$1$次変換を表す行列は,それぞれ,上の条件$(*)$を満たすことを確かめよ.
(3)$(2)$で考えた$1$次変換$f$および$g$を表す行列をそれぞれ$F$および$G$とし,$A=FGF^{-1}$で定義される行列$A$によって表される$1$次変換を考える.この変換によって直線$y=mx$上の任意の点がそれ自身に移されるとき,$A$を実数$m$を用いて表せ.ただし,$F^{-1}$は$F$の逆行列を表す.
(4)$(1)$で考えた点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$の座標を用いて,$S=x_1y_2-y_1x_2$および$S^{\prime}={x_1}^\prime {y_2}^\prime-{y_1}^\prime {x_2}^\prime$を定義する.$\mathrm{P}$,$\mathrm{Q}$から$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$への変換を表す行列が$(3)$で求めた$A$で与えられるとき,$S$と$S^\prime$の関係式を求めよ.
札幌医科大学 公立 札幌医科大学 2013年 第3問
曲線$7x^2+2 \sqrt{3}xy+9y^2=30$上の点$(x,\ y)$に対して,変換
\[ \left\{ \begin{array}{l}
X=x \cos \theta-y \sin \theta \\
Y=x \sin \theta+y \cos \theta \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \]
を考える(ただし$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする).このとき$X,\ Y$のみたす式は
\[ a(\theta)X^2+b(\theta)XY+c(\theta)Y^2=30 \]
となる.ただし,$a(\theta)$,$b(\theta)$,$c(\theta)$は$\theta$のみにより決まる定数である.いま,$b(\theta)=0$をみたす$\theta$を$\theta_1$とする.

(1)$\theta_1$を求めよ.
(2)$a(\theta_1)X^2+c(\theta_1)Y^2=30$で囲まれた図形の面積を求めよ.
(3)$a(\theta_1)X^2+c(\theta_1)Y^2=30$に内接する平行四辺形の面積の最大値を求めよ.
富山県立大学 公立 富山県立大学 2013年 第4問
$a,\ b,\ c,\ d$は実数とする.$1$次変換とは,座標平面上の任意の点$(x,\ y)$を同じ平面上の点$(X,\ Y)$に移す変換で,その変換の規則が$\left( \begin{array}{c}
X \\
Y
\end{array} \right)=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right)$と表せるものである.このとき,行列$\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$を$1$次変換を表す行列という.次の変換が,$1$次変換であるならばその$1$次変換を表す行列を求め,$1$次変換でないならばその理由を述べよ.

(1)座標平面上の任意の点をそれ自身に移す変換
(2)座標平面上の任意の点を直線$y=-x$に関して対称な点に移す変換
(3)座標平面上の任意の点を$x$軸方向に$2$,$y$軸方向に$4$だけ移動する変換
スポンサーリンク

「変換」とは・・・

 まだこのタグの説明は執筆されていません。