タグ「変換」の検索結果

3ページ目:全117問中21問~30問を表示)
南山大学 私立 南山大学 2014年 第1問
$[ ]$の中に答を入れよ.

(1)行列$A=\left( \begin{array}{cc}
a & 2b \\
-b & a
\end{array} \right)$の表す$1$次変換によって,点$(3,\ 1)$が点$(7,\ -5)$に移され,点$(p,\ q)$が点$(4,\ 1)$に移される.$a$と$b$の値を求めると$(a,\ b)=[ア]$であり,$p$と$q$の値を求めると$(p,\ q)=[イ]$である.
(2)$3$辺の長さがそれぞれ$\displaystyle 1,\ x,\ 2-x \left( \frac{1}{2}<x<\frac{3}{2} \right)$の三角形がある.この三角形の面積$S$を$x$で表すと$S=[ウ]$であり,$\displaystyle S \geqq \frac{\sqrt{2}}{4}$となる$x$の値の範囲を求めると$[エ]$である.
(3)$2$つの数列$\{a_n\}$と$\{b_n\}$は,

$a_n=2n-1 \quad (n=1,\ 2,\ 3,\ \cdots)$
$b_1=2, (n+1)b_{n+1}=a_{n+1}+nb_n \quad (n=1,\ 2,\ 3,\ \cdots)$

を満たす.$\displaystyle \sum_{k=1}^n a_k$を求めると,$\displaystyle \sum_{k=1}^n a_k=[オ]$である.$\{b_n\}$の一般項を求めると,$b_n=[カ]$である.
(4)$0 \leqq \theta<2\pi$のとき,$y=1-2 \sin \theta-\cos 2\theta$の最大値を求めると,$y=[キ]$であり,$z=\sin^2 \theta+\sqrt{3} \sin \theta \cos \theta+2 \cos^2 \theta$の最大値を求めると,$z=[ク]$である.
(5)$3$つのサイコロを同時に投げるとき,出た目の和が$4$以下である確率は$[ケ]$であり,出た目の和が奇数であるか$5$以上である確率は$[コ]$である.
同志社大学 私立 同志社大学 2014年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)数列$\{a_n\}$が$a_1=1$,$a_{n+1}=4a_n+1$で与えられているとき,$a_2=[ア]$であり,その一般項は$a_n=[イ]$となる.また,$a_{n+2}-a_n$を$5$で割った余りは$[ウ]$である.ここで,$a_n$を$5$で割った余りを$b_n$とする.このとき,$b_4=[エ]$,$b_5=[オ]$であり,$\displaystyle \sum_{k=1}^{2n} a_kb_k=[カ]$である.
(2)座標平面において$1$次変換$f$による点$\mathrm{A}(2,\ 0)$の像は点$\mathrm{C}(4,\ 0)$であり,点$\mathrm{B}(0,\ 4)$の像も点$\mathrm{C}(4,\ 0)$であるとする.このとき,$f$による点$\mathrm{D}(3,\ 2)$の像は点$([キ],\ [ク])$である.次に,放物線上を動く点$\displaystyle \mathrm{P} \left( t,\ -\frac{1}{2} t^2+1 \right) (0 \leqq t \leqq 4)$の$f$による像を点$\mathrm{Q}$とする.点$\mathrm{Q}$の$x$座標の最大値は$[ケ]$であり,そのときの点$\mathrm{P}$の$x$座標は$[コ]$である.
獨協医科大学 私立 獨協医科大学 2014年 第4問
行列$A=r \left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$で表される$1$次変換$f$について考える.点$\mathrm{P}_0$の座標を$(1,\ 0)$とし,$n$を正の整数とするとき,$f$によって点$\mathrm{P}_{n-1}$が移される点を$\mathrm{P}_n$とする.また,$\displaystyle \sum_{k=0}^{n-1} \overrightarrow{\mathrm{OP}_k}=\overrightarrow{\mathrm{OQ}_n}$となる点$\mathrm{Q}_n$の座標を$(x_n,\ y_n)$とし,$n \to \infty$のときに$x_n,\ y_n$がともに収束する場合の点$\mathrm{Q}_n$の極限値$\displaystyle \mathrm{Q} \left( \lim_{n \to \infty} x_n,\ \lim_{n \to \infty} y_n \right)$を求めよう.

(1)$\displaystyle r=\frac{1}{2}$,$\displaystyle \theta=\frac{\pi}{3}$のとき,$\displaystyle A^3=\frac{[アイ]}{[ウ]} \left( \begin{array}{cc}
[エ] & [オ] \\
[オ] & [エ]
\end{array} \right)$であり,$\mathrm{P}_7$の座標は$\displaystyle \left( \frac{[カ]}{[キクケ]},\ \frac{\sqrt{[コ]}}{[キクケ]} \right)$である.
(2)$E-A$が逆行列をもたない$r,\ \theta (r \geqq 0,\ 0 \leqq \theta<2\pi)$の条件は,$r=[サ]$かつ$\theta=[シ]$である.ただし,$E$は単位行列とする.
$E-A$が逆行列をもつとき,$n$を$2$以上の整数とすると
$(E-A)(E+A+A^2+\cdots +A^{n-1})=E-A^n$より
\[ E+A+A^2+\cdots +A^{n-1}=(E-A)^{-1}(E-A^n) \]
また,$\displaystyle (E-A)^{-1}=\frac{1}{r^2-2r \cos \theta+1} \left( \begin{array}{cc}
1-r \cos \theta & -r \sin \theta \\
r \sin \theta & 1-r \cos \theta
\end{array} \right)$であるから
$\displaystyle (E-A)^{-1}(E-A^n)=\frac{1}{r^2-2r \cos \theta+1}T$とすると
\[ T=\left( \begin{array}{cc}
1-r \cos \theta-r^n [ス]+r^{n+1} [セ] & -r \sin \theta+r^n [ソ]-r^{n+1} [タ] \\
r \sin \theta-r^n [ソ]+r^{n+1} [タ] & 1-r \cos \theta-r^n [ス]+r^{n+1} [セ]
\end{array} \right) \]
である.ただし,$[ス]$,$[セ]$,$[ソ]$,$[タ]$には,次の$\nagamaruichi$~$\nagamaruroku$の中から最も適切なものをそれぞれ一つ選ぶこと.なお,同じ選択肢を選んでもよいものとする.
\[ \nagamaruichi \ \sin n\theta \quad \nagamaruni \ \cos n\theta \quad \nagamarusan \ \sin (n-1) \theta \quad \nagamarushi \ \cos (n-1) \theta \quad \nagamarugo \ \sin (n+1) \theta \quad \nagamaruroku \ \cos (n+1) \theta \]
$0 \leqq r<1$のとき,$\lim_{n \to \infty} x_n,\ \lim_{n \to \infty} y_n$はともに収束し,さらに$\displaystyle \theta=\frac{\pi}{3}$とすると,
\[ \mathrm{Q}=\left( \frac{[チ]-r}{[ツ]-2r+[テ]r^2},\ \frac{\sqrt{[ト]}r}{[ツ]-2r+[テ]r^2} \right) \]
である.
大阪市立大学 公立 大阪市立大学 2014年 第3問
$1$次変換$f$は点$(1,\ 3)$を点$(3,\ 5)$へ,点$(1,\ -1)$を点$(1,\ -1)$へ移すとする.$f$を表す行列を$A$とするとき,次の問いに答えよ.

(1)$A$を求めよ.
(2)$A^2,\ A^3$を求めよ.
(3)自然数$n$に対して$A^n$を推測し,その推測が正しいことを数学的帰納法によって証明せよ.
富山県立大学 公立 富山県立大学 2014年 第4問
$\alpha$は実数とする.行列$A=\left( \begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array} \right)$,$B=\left( \begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array} \right)$について,次の問いに答えよ.

(1)$A=r \left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$と表すとき,$r,\ \theta$の値を求めよ.ただし,$r>0$,$0<\theta<\pi$とする.
(2)$B^n=\left( \begin{array}{cc}
\cos n\alpha & -\sin n\alpha \\
\sin n\alpha & \cos n\alpha
\end{array} \right) (n=1,\ 2,\ 3,\ \cdots)$となることを数学的帰納法を用いて示せ.
(3)$A_n=r_n \left( \begin{array}{cc}
\cos \theta_n & -\sin \theta_n \\
\sin \theta_n & \cos \theta_n
\end{array} \right) (n=1,\ 2,\ 3,\ \cdots)$を$(A_n)^n=A$により定める.ただし,$r_n>0$,$\displaystyle 0<\theta_n<\frac{\pi}{n}$とする.このとき,$r_n$,$\theta_n$を$n$の式で表せ.
(4)$(3)$で定めた$A_n$を用いて行列$T_n$を$T_n=nA_n$により定める.点$\mathrm{O}$を原点とする座標平面上において,$T_n$の表す$1$次変換によって点$(1,\ 0)$が移される点を$\mathrm{P}_n$とするとき,$\triangle \mathrm{OP}_n \mathrm{P}_{n+1}$の面積$S_n$を$n$の式で表せ.また,極限$\displaystyle \lim_{n \to \infty} S_n$を求めよ.
北海道大学 国立 北海道大学 2013年 第2問
座標平面上で,直線$y=x$に関する対称移動を$f$とし,実数$c$に対して,直線$y=cx$に関する対称移動を$g$とする.また,原点を中心とする$120^\circ$の回転移動を$h$とする.

(1)$f$を表す行列,および$h$を表す行列を求めよ.
(2)$g$を表す行列を求めよ.
(3)合成変換$f \circ g$が$h$になるように$c$の値を定めよ.
岡山大学 国立 岡山大学 2013年 第2問
行列$A=\left( \begin{array}{cc}
a & -b \\
b & a
\end{array} \right)$で定まる座標平面上の$1$次変換を$f$とする.ただし,$a,\ b$は実数とする.このとき,以下の問いに答えよ.

(1)原点$\mathrm{O}$とは異なる点$\mathrm{P}(x,\ y)$を$f$で移した点を$\mathrm{Q}$とする.このとき,長さの比の値$\displaystyle \frac{\mathrm{OQ}}{\mathrm{OP}}$は$\mathrm{P}$によらないことを示し,その値を$a,\ b$を用いて表せ.
(2)正の整数$n$に対して,$A^n=\left( \begin{array}{cc}
p_n & q_n \\
r_n & s_n
\end{array} \right)$とするとき,
\[ p_n^2+r_n^2=(a^2+b^2)^n,\quad q_n^2+s_n^2=(a^2+b^2)^n \]
が成り立つことを示せ.
(3)$109^2=l^2+m^2$を満たす正の整数$l,\ m$を一組求めよ.
広島大学 国立 広島大学 2013年 第1問
$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$とする.座標平面上で原点$\mathrm{O}$を通り傾きが$\tan \theta$の直線を$\ell$とし,行列
\[ \left( \begin{array}{cc}
\cos^2 \theta & \sin \theta \cos \theta \\
\sin \theta \cos \theta & \sin^2 \theta
\end{array} \right) \]
の表す$1$次変換を$f$とする.座標平面上に$2$点$\mathrm{P},\ \mathrm{Q}$がある.次の問いに答えよ.

(1)線分$\mathrm{OP}$が直線$\ell$と垂直であるとき,$1$次変換$f$による点$\mathrm{P}$の像を求めよ.
(2)$1$次変換$f$による点$\mathrm{Q}$の像を$\mathrm{R}$とする.このとき$|\overrightarrow{\mathrm{OR}}| \leqq |\overrightarrow{\mathrm{OQ}}|$が成り立つことを示せ.さらに等号が成立する場合を調べよ.
(3)$1$次変換$f$による点$(1,\ 1)$の像を$\mathrm{S}$とする.このとき$|\overrightarrow{\mathrm{OS}}|$が最大となる$\theta$と最小となる$\theta$をそれぞれ求めよ.
大阪教育大学 国立 大阪教育大学 2013年 第2問
直線$y=mx \ (m \neq 0)$を$\ell$とし,行列$\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$で表される平面上の$1$次変換$f$は次の二つの条件を満たすとする.

$\ell$の各点は$f$で動かない.
$f$は点$\mathrm{A}(1,\ 0)$を,$\mathrm{A}$を通り$\ell$に平行な直線上の点に移す.

このとき,次の問いに答えよ.

(1)$a,\ c,\ d$を$b,\ m$を用いて表せ.
(2)$ad-bc$の値を求めよ.
(3)$f$により平面上の任意の点$\mathrm{P}$は,$\mathrm{P}$を通り$\ell$に平行な直線上の点に移ることを示せ.
東京農工大学 国立 東京農工大学 2013年 第1問
$a$を実数とする.行列
\[ A=\left( \begin{array}{cc}
a & 3 \\
-2 & -1
\end{array} \right),\quad P=\left( \begin{array}{cc}
1 & 3 \\
-1 & -2
\end{array} \right) \]
について,次の問いに答えよ.

(1)$P^{-1}AP$の$(1,\ 2)$成分と$(2,\ 1)$成分が等しくなるような$a$の値を求めよ.
(2)$a$を(1)で求めた値とするとき,自然数$n$に対して$A^n$を求めよ.
(3)$a$を(1)で求めた値とするとき,$A^n$が表す$1$次変換によって,$xy$平面上の$2$点$\mathrm{Q}(1,\ -1)$と$\mathrm{R}(0,\ 2)$とが移る$2$点を通る直線を$L_n$とおく.$L_n$の$y$切片を$y_n$とするとき,$\displaystyle \lim_{n \to \infty}y_n$を求めよ.
スポンサーリンク

「変換」とは・・・

 まだこのタグの説明は執筆されていません。