タグ「変換」の検索結果

2ページ目:全117問中11問~20問を表示)
室蘭工業大学 国立 室蘭工業大学 2014年 第5問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の表す$1$次変換$f$は,原点$(0,\ 0)$以外のある点を原点に移す.

(1)$ad-bc$の値を求めよ.
(2)$a+d=1$のとき,$A^{2014}-A$を求めよ.
九州工業大学 国立 九州工業大学 2014年 第2問
座標平面において,行列$A=\left( \begin{array}{cc}
\displaystyle\frac{1}{2} & \displaystyle\frac{2}{3} \\
\displaystyle\frac{1}{4} & \displaystyle\frac{2}{3}
\end{array} \right)$が表す移動($1$次変換)を$f$とし,直線$x+2y=1$を$\ell$とする.次に答えよ.

(1)点$\mathrm{P}(p_1,\ p_2)$が$f$によって移る点を$\mathrm{Q}(q_1,\ q_2)$とする.$\mathrm{P}$が$\ell$上の点のとき,$\mathrm{Q}$は$\ell$上にあることを示せ.
(2)$\ell$上の点$\mathrm{R}$は$f$によって$\mathrm{R}$自身に移る.

(i) $\mathrm{R}$の座標を求めよ.
(ii) $\mathrm{R}$と異なる$\ell$上の点$\mathrm{P}$が$f$によって点$\mathrm{Q}$に移るとき,$\displaystyle \frac{|\overrightarrow{\mathrm{RQ}}|}{|\overrightarrow{\mathrm{RP}}|}$を求めよ.

(3)数列$\{a_n\},\ \{b_n\}$を
\[ a_1=1,\quad b_1=0,\quad \left( \begin{array}{c}
a_{n+1} \\
b_{n+1}
\end{array} \right)=A \left( \begin{array}{c}
a_{n} \\
b_{n}
\end{array} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定める.$\{a_n\},\ \{b_n\}$の一般項を求めよ.さらに$\displaystyle \lim_{n \to \infty} a_n$,$\displaystyle \lim_{n \to \infty} b_n$を求めよ.
山梨大学 国立 山梨大学 2014年 第2問
実数を成分とする$2$次正方行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$が,実数$k$に対し,$A^2-kA=(k-3)E$を満たすとする.ただし,$E$は$2$次の単位行列である.

(1)$b \neq 0$または$c \neq 0$のとき,$a+d$および$ad-bc$を$k$を用いた式で表せ.
(2)実数$k$が$A \left( \begin{array}{c}
1 \\
k
\end{array} \right)=\left( \begin{array}{c}
1 \\
k
\end{array} \right)$を満たすとき,$k$の値を求めよ.
(3)$k$を定数として,$bc$が最大となるような$a,\ d$とそのときの$bc$を$k$を用いた式で表せ.また,そのような行列$A$の例を$k$を用いて$1$つあげよ.
(4)$k$を定数として,行列$A$は$bc$が最大となる行列とする.行列$A$で表される$1$次変換が,直線$y=kx$上の各点$\mathrm{P}$を$\mathrm{P}$自身に移すとすると,$A=E$となることを示せ.
山形大学 国立 山形大学 2014年 第4問
座標平面上の$1$次変換$f$は点$(1,\ 2)$を点$\displaystyle \left( \frac{1}{2}-\sqrt{3},\ 1+\frac{\sqrt{3}}{2} \right)$に,点$(3,\ 4)$を点$\displaystyle \left( \frac{3}{2}-2 \sqrt{3},\ 2+\frac{3 \sqrt{3}}{2} \right)$に移すとする.$\mathrm{O}$を原点として,次の問に答えよ.

(1)$1$次変換$f$を表す行列$A$を求めよ.
(2)点$\mathrm{P}(1,\ 0)$が$f$により点$\mathrm{Q}$に移るとき,$\angle \mathrm{POQ}$を求めよ.また線分$\mathrm{OQ}$の長さを求めよ.
(3)点$\mathrm{R}$を$(2 \cos \theta,\ 2 \sin \theta)$で定める$\displaystyle \left( 0<\theta \leqq \frac{\pi}{2} \right)$.$f$により,点$\mathrm{R}$は点$\mathrm{S}$に,点$\mathrm{S}$は点$\mathrm{T}$に,点$\mathrm{T}$は点$\mathrm{U}$に,点$\mathrm{U}$は点$\mathrm{V}$に移るとする.

(i) 三角形$\mathrm{ORS}$の面積を求めよ.
(ii) 点$(2,\ 0)$と点$\mathrm{R}$,$\mathrm{S}$,$\mathrm{T}$,$\mathrm{U}$,$\mathrm{V}$を頂点とする六角形の面積$H(\theta)$の最大値と,そのときの$\theta$の値を求めよ.
徳島大学 国立 徳島大学 2014年 第1問
$A=\left( \begin{array}{cc}
\displaystyle\frac{3}{4} & \displaystyle\frac{1}{2} \\
\displaystyle\frac{1}{4} & \displaystyle\frac{1}{2}
\end{array} \right)$とし,行列$A$で表される$1$次変換を$f$とする.$f$によって点$\mathrm{P}(0,\ 1)$が点$\mathrm{P}_1(x_1,\ y_1)$に移されるとする.さらに,$n=1,\ 2,\ 3,\ \cdots$に対して,点$\mathrm{P}_n(x_n,\ y_n)$が$f$によって点$\mathrm{P}_{n+1}(x_{n+1},\ y_{n+1})$に移されるとする.

(1)すべての自然数$n$について,点$\mathrm{P}_n$は直線$x+y=1$上にあることを証明せよ.
(2)$x_{n+1}$を$x_n$の式で表せ.さらに,数列$\{x_n\}$の一般項を求めよ.
(3)$n$を限りなく大きくするとき,点$\mathrm{P}_n$が近づいていく点の座標を求めよ.
鳥取大学 国立 鳥取大学 2014年 第2問
実数$a,\ b,\ \theta$に対して,行列$A,\ R$を以下のように定める.
\[ A=\left( \begin{array}{cc}
a & -b \\
b & a
\end{array} \right),\quad R=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right) \]
また$xy$平面内の相異なる$2$点$\mathrm{P}_0(p_x,\ p_y)$および$\mathrm{Q}_0(q_x,\ q_y)$を考える.$0$以上の整数$n$に対し,行列$A^n$の表す$1$次変換による点$\mathrm{P}_0$,$\mathrm{Q}_0$の像をそれぞれ$\mathrm{P}_n$,$\mathrm{Q}_n$とし,$2$点$\mathrm{P}_n$,$\mathrm{Q}_n$間の距離を$D_n$とする.ただし$A^0$は単位行列とする.

(1)$D_0$を$p_x,\ p_y,\ q_x,\ q_y$を用いて表せ.
(2)正の実数$s$に対して,$sR=A$が成り立つとき,$s$を$a,\ b$を用いて表せ.
(3)$D_n$と$D_0$の比$\displaystyle \frac{D_n}{D_0}$を$a,\ b$を用いて表せ.
鳥取大学 国立 鳥取大学 2014年 第2問
実数$a,\ b,\ \theta$に対して,行列$A,\ R$を以下のように定める.
\[ A=\left( \begin{array}{cc}
a & -b \\
b & a
\end{array} \right),\quad R=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right) \]
また$xy$平面内の相異なる$2$点$\mathrm{P}_0(p_x,\ p_y)$および$\mathrm{Q}_0(q_x,\ q_y)$を考える.$0$以上の整数$n$に対し,行列$A^n$の表す$1$次変換による点$\mathrm{P}_0$,$\mathrm{Q}_0$の像をそれぞれ$\mathrm{P}_n$,$\mathrm{Q}_n$とし,$2$点$\mathrm{P}_n$,$\mathrm{Q}_n$間の距離を$D_n$とする.ただし$A^0$は単位行列とする.

(1)$D_0$を$p_x,\ p_y,\ q_x,\ q_y$を用いて表せ.
(2)正の実数$s$に対して,$sR=A$が成り立つとき,$s$を$a,\ b$を用いて表せ.
(3)$D_n$と$D_0$の比$\displaystyle \frac{D_n}{D_0}$を$a,\ b$を用いて表せ.
東京農工大学 国立 東京農工大学 2014年 第2問
$a,\ b$を実数とする.行列$A=\left( \begin{array}{cc}
4 & 3 \\
a & b
\end{array} \right)$,$B=\left( \begin{array}{cc}
a & b \\
b & -a
\end{array} \right)$が
\[ AB=\left( \begin{array}{cc}
10 & 5 \\
5 & 0
\end{array} \right) \]
を満たしている.次の問いに答えよ.

(1)$a,\ b$の値を求めよ.ただし答えのみでよい.
(2)$m,\ n$は実数で,$m \neq 0$,$n \neq 0$とする.座標平面上の$2$点$\mathrm{S}_1(m,\ 0)$,$\mathrm{S}_2(0,\ n)$をとり,行列$A$が表す$1$次変換によって$S_1$,$S_2$が移る点をそれぞれ${\mathrm{S}_1}^\prime$,${\mathrm{S}_2}^\prime$とする.$2$点${\mathrm{S}_1}^\prime$,${\mathrm{S}_2}^\prime$を通る直線が$2$点$\mathrm{S}_1$,$\mathrm{S}_2$を通る直線に一致するとき,$n$を$m$の式で表せ.
(3)$2$点$\mathrm{T}_1(-7,\ 0)$,$\mathrm{T}_2(0,\ 7)$を通る直線を$\ell$とする.行列$B$が表す$1$次変換によって$\mathrm{T}_1$,$\mathrm{T}_2$が移る点をそれぞれ${\mathrm{T}_1}^\prime$,${\mathrm{T}_2}^\prime$とし,$2$点${\mathrm{T}_1}^\prime$,${\mathrm{T}_2}^\prime$を通る直線を$\ell^\prime$とする.原点を中心とする半径$r$の円を$C$とする.$C$と$\ell$が異なる$2$点で交わり,かつ$C$と$\ell^\prime$も異なる$2$点で交わるとする.このような$r$の値の範囲を求めよ.
(4)$(3)$において,円$C$が$\ell$を切り取る線分の長さを$L$とし,円$C$が$\ell^\prime$を切り取る線分の長さを$L^\prime$とする.このような$L,\ L^\prime$の中で,$L$が最も小さい自然数になるときの$L^\prime$の値を求めよ.
産業医科大学 私立 産業医科大学 2014年 第2問
行列$\displaystyle A=\frac{1}{3} \left( \begin{array}{cc}
2 & 1 \\
1 & 2
\end{array} \right)$について,次の問いに答えなさい.

(1)自然数$n$について,$\displaystyle \left( \begin{array}{c}
p_n \\
q_n
\end{array} \right)=A^n \left( \begin{array}{c}
\sqrt{2} \\
\sqrt{3}
\end{array} \right)$とするとき,極限$\displaystyle \lim_{n \to \infty}(p_nq_n)$を求めなさい.
(2)行列$A$で表される$1$次変換によってそれ自身へ移される直線をすべて求めなさい.
青山学院大学 私立 青山学院大学 2014年 第5問
行列$A,\ E,\ O$を
\[ A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right),\quad E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right),\quad O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right) \]
で定め,行列$A$の表す$1$次変換を$f$とする.また,行列$A-E$の逆行列が存在しないとする.このとき,以下の問に答えよ.

(1)等式$A^2-(a+d)A+(a+d-1)E=O$が成り立つことを示せ.
(2)点$\mathrm{P}$を平面上の任意の点とする.$1$次変換$f$による点$\mathrm{P}$の像を$\mathrm{Q}$とし,$f$による点$\mathrm{Q}$の像を$\mathrm{R}$とすると,$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$は一直線上にあることを示せ.
スポンサーリンク

「変換」とは・・・

 まだこのタグの説明は執筆されていません。