タグ「変換」の検索結果

11ページ目:全117問中101問~110問を表示)
埼玉大学 国立 埼玉大学 2010年 第1問
行列$A = \left(
\begin{array}{cc}
a & b \\
c & d
\end{array}
\right)$の表す1次変換$f$は,点$(1,\ 1)$を点$(2,\ 3)$に,点$(2,\ -1)$を点$(2k,\ -k-1)$に移すとする.また,原点をOとし,点$(1,\ 0)$,$(0,\ 1)$を$f$で移した点をそれぞれP,Qとする.

(1)$A$の成分$a,\ b,\ c,\ d$を$k$を用いて表せ.
(2)$\angle$POQが直角となる$k$を求めよ.
(3)$\text{OP}=\text{OQ}$となる$k$を求めよ.
埼玉大学 国立 埼玉大学 2010年 第1問
行列$A = \left(
\begin{array}{cc}
a & b \\
c & d
\end{array}
\right)$の表す1次変換$f$は,点$(1,\ 1)$を点$(2,\ 3)$に,点$(2,\ -1)$を点$(2k,\ -k-1)$に移すとする.また,原点をOとし,点$(1,\ 0)$,$(0,\ 1)$を$f$で移した点をそれぞれP,Qとする.

(1)$A$の成分$a,\ b,\ c,\ d$を$k$を用いて表せ.
(2)$\angle$POQが直角となる$k$を求めよ.
(3)$\text{OP}=\text{OQ}$となる$k$を求めよ.
広島大学 国立 広島大学 2010年 第1問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の表す1次変換$f$によって,点P$_1(1,\ 0)$が点P$_2(0,\ 3)$に移され,点P$_2$が点P$_3$に,点P$_3$が点P$_1(1,\ 0)$にそれぞれ移されるとする.次の問いに答えよ.ただし,$a,\ b,\ c,\ d$は実数である.

(1)行列$A$を求めよ.
(2)自然数$n$に対して$A^n$を求めよ.
(3)O$(0,\ 0)$とする.点P$(\cos \theta,\ \sin \theta)$が$f$によって点Qに移されるとする.$0 \leqq \theta \leqq 2\pi$のとき,ベクトル$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$の内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}$のとり得る値の範囲を求めよ.
信州大学 国立 信州大学 2010年 第2問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$は零行列ではなく,$A^2$が零行列となるとする.次の問に答えよ.

(1)$a+d=ad-bc=0$を示せ.
(2)行列$A$が表す一次変換によって,座標平面上の原点と任意の点P,Qは同一直線上に移ることを示せ.
山口大学 国立 山口大学 2010年 第3問
$A,\ A^\prime$をそれぞれ座標平面上の点$(\alpha \cos \theta,\ \alpha \sin \theta)$,$(-\alpha \cos \theta,\ -\alpha \sin \theta)$とし,$f$を行列
\[ \biggl( \begin{array}{cc}
r \cos \theta & -r \sin \theta \\
r \sin \theta & r \cos \theta
\end{array} \biggr) \]
の表す1次変換とする.$\displaystyle \alpha= \left( \frac{45}{4} \right)^{\frac{1}{6}},\ r=\left( \frac{10}{3} \right)^{\frac{1}{6}},\ \theta=\frac{\pi}{6}$とするとき,次の問いに答えなさい.

(1)2点A,A$^{\prime}$の逆変換$f^{-1}$による像を焦点とし,焦点からの距離の差が2に等しい双曲線$C_1$の方程式を求めなさい.
(2)2点A,A$^\prime$の合成関数$f \circ f$による像を焦点とし,直線$x+2y=0$を漸近線にもつ双曲線$C_2$の方程式を求めなさい.
(3)双曲線$C_1$と$C_2$により囲まれた部分を$x$軸の周りに1回転させてできる立体の体積を求めなさい.
佐賀大学 国立 佐賀大学 2010年 第2問
座標平面上で,直線$\ell:y=mx$に関する対称移動によって,点P$(x,\ y)$が点Q$(x^\prime,\ y^\prime)$に移ったとする.ただし,$m$は0でない定数とし,点Pは$\ell$上にないとする.このとき,次の問いに答えよ.

(1)線分PQの中点が$\ell$上にあることと,線分PQが$\ell$と垂直に交わっていることを利用して
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right)=\frac{1}{1+m^2} \left( \begin{array}{cc}
1-m^2 & 2m \\
2m & m^2-1
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right) \]
が成り立つことを示せ.
(2)直線$\displaystyle y=\frac{1}{\sqrt{3}}x,\ y=-\frac{1}{\sqrt{3}}x$に関する対称移動を表す1次変換をそれぞれ$f,\ g$とする.このとき,合成変換$g \circ f$および$f \circ g$を表す行列を求めよ.
(3)(2)で求めた2つの行列は,原点Oを中心とし,角$\theta$だけ回転する1次変換を表す行列である.それぞれの$\theta$を求めよ.
九州工業大学 国立 九州工業大学 2010年 第1問
行列
\[ A=\left( \begin{array}{cc}
a-b & a \\
2a & a+b
\end{array} \right) \]
の定める移動(1次変換)
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right) = A \left( \begin{array}{c}
x \\
y
\end{array} \right) \]
を$f$とし,原点を通る2直線を$\ell_1:y=m_1x,\ \ell_2:y=m_2x$とする$(m_1<m_2)$.次に答えよ.

(1)$f$により,直線$\ell_1$上の点$(1,\ m_1)$は$\ell_1$上の点に移り,直線$\ell_2$上の点$(1,\ m_2)$は$\ell_2$上の点に移るとする.$m_1,\ m_2$を$a,\ b$を用いて表せ.ただし,$a>0$とする.
(2)実数$a,\ b$が$(a-2)^2+b^2=3$をみたすとき,$\displaystyle \frac{b}{a}$のとる値の範囲を求めよ.
(3)(1)で求めた$m_1,\ m_2$に対して2直線$\ell_1,\ \ell_2$のなす角を$\theta$とする$\displaystyle \left( 0<\theta \leqq \frac{\pi}{2} \right)$.実数$a,\ b$が$(a-2)^2+b^2=3$をみたすとき,$\cos \theta$のとる値の範囲を求めよ.
福井大学 国立 福井大学 2010年 第4問
$p$を0でない実数とし,行列$A,\ B$をそれぞれ次のように定める.このとき,以下の問いに答えよ.
\[ A=\biggl( \begin{array}{cc}
p-\frac{1}{p} & 1 \\
2 & -p
\end{array} \biggr),\quad B=\biggl( \begin{array}{cc}
1 & 0 \\
\frac{1}{p} & -1
\end{array} \biggr) \]

(1)等式$A^{-1}=aA+bE$が成り立つ定数$a,\ b$を$p$で表せ.ただし,$E$は2次の単位行列である.
(2)$AB=C$とおく.$E+C$の逆行列が存在することを示し,さらに自然数$m$に対して等式
\[ E-C+C^2-C^3+\cdots -C^{2m-1}=(E-C^{2m})(E+C)^{-1} \]
が成り立つことを示せ.
(3)$p=\sqrt{3}$とし,自然数$n$に対し$D_n=E-C+C^2-C^3+\cdots -C^{6n-1}$とおく.行列$D_n$の表す1次変換により点$(2,\ 3)$が点$(x_n,\ y_n)$に移されるとする.$x_n$および$\displaystyle \frac{y_n}{x_n}$を求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第5問
2次の正方行列$A,\ B$について,次の各問いに答えよ.

(1)行列$A=\left( \begin{array}{cc}
\displaystyle\frac{4}{5} & b \\
c & d
\end{array} \right)$は原点のまわりの回転移動を表し,$b>0$である.行列$A$を求めよ.
(2)行列$B$の表す移動(1次変換)に続いて行列$A$の表す移動を行うことで得られる合成移動(合成変換)は$y$軸に関する対称移動になる.行列$B$を求めよ.
(3)$B \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
x \\
y
\end{array} \right)$を満たす点$(x,\ y)$の集まりは直線となることを示せ.また,その直線を表す式を求めよ.
(4)$B \left( \begin{array}{c}
z \\
w
\end{array} \right)=\left( \begin{array}{c}
2 \\
1
\end{array} \right)$を満たす列ベクトル$\left( \begin{array}{c}
z \\
w
\end{array} \right)$を求めよ.また,この列ベクトルと自然数$n$に対し,$B^n \left( \begin{array}{c}
z \\
w
\end{array} \right)$を求めよ.
日本女子大学 私立 日本女子大学 2010年 第1問
行列$P$で表される$1$次変換によって平面上の点$(-2,\ 1)$と点$(1,\ 1)$が,それぞれ点$(-1,\ 3)$,点$(2,\ 6)$に移る.

(1)$P$を求めよ.
(2)実数$a,\ b,\ c,\ d$に対して行列
\[ A=\left( \begin{array}{rr}
a & b \\
-5 & 8
\end{array} \right),\quad B=\left( \begin{array}{cc}
c & 0 \\
0 & d
\end{array} \right) \]

\[ AP=PB \]
を満たしているとする.このとき,$a,\ b,\ c,\ d$の値を求めよ.
(3)$P$が逆行列$P^{-1}$をもつことを示し,$(PBP^{-1})^2$を求めよ.
(4)自然数$n$に対して$A^n$を求めよ.
スポンサーリンク

「変換」とは・・・

 まだこのタグの説明は執筆されていません。