タグ「変形」の検索結果

2ページ目:全17問中11問~20問を表示)
東京理科大学 私立 東京理科大学 2012年 第1問
$[ ]$内のカタカナにあてはまる$0$から$9$までの数字を求めよ.

(1)$k$を自然数とすると,不等式
\[ k>\frac{\sqrt{k}+\sqrt{k-1}}{2} \]
が成立する.この不等式の右辺の逆数は$\displaystyle [ア] \left( \sqrt{k}-\sqrt{k-[イ]} \right)$であるから,不等式
\[ \frac{1}{k}<[ア] \left( \sqrt{k}-\sqrt{k-[イ]} \right) \]
を得る.この不等式がすべての自然数$k$に対して成立することより,
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{k}=[ウ] \]
であることがわかる.
(2)自然数$n$に対し,
\[ a_n=\sum_{m=1}^{\infty} \frac{1}{m(m+n+1)},\quad s_n=\sum_{k=1}^n \frac{1}{k} \]
と定める.

(i) $\displaystyle \sum_{n=2}^{\infty} \frac{1}{n(n+1)}$を求めよ.

(ii) $\displaystyle \sum_{n=1}^{\infty} \left( \frac{1}{n}-\frac{1}{n+1} \right) s_{n+1}$を求めよ.

(ヒント:$n \geqq 2$であるような各自然数$n$に対して$s_{n+1}-s_n$を考えることにより,$(ⅰ)$の結果が使える形に変形せよ.)
(iii) $n$を自然数とする.また,$p$は自然数で,等式
\[ \sum_{m=1}^{\infty} \left( \frac{1}{m}-\frac{1}{m+n+1} \right)=s_p \]
が成立しているとする.このとき,$p$を$n$の$1$次式の形に表せ.
\mon[$\tokeishi$] $n$を自然数とし,$p$は$(ⅲ)$における通りであるとする.また,$q$は自然数で,等式
\[ a_n=\frac{s_p}{q} \]
が成立しているとする.このとき,$q$を$n$の$1$次式の形に表せ.
\mon[$\tokeigo$] $\displaystyle \sum_{n=1}^{\infty} \frac{a_n}{n}$を求めよ.
関西学院大学 私立 関西学院大学 2012年 第2問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)$a,\ b$は実数とする.$x$についての整式
\[ F(x)=x^3+x^2+ax+b \]
が$x+3$で割り切れるとすると,$b=[ア]$が成り立つ.ただし,$[ア]$は$a$の式である.$b=[ア]$を用いて$F(x)$の式から$b$を消去すると,$F(x)=[イ]$となる.整式$[イ]$を$x+3$で割ったときの商は$[ウ]$である.整式$[ウ]$が,さらに$x+3$で割り切れるとき,$a$の値は$a=[エ]$である.よって,整式$F(x)$が$(x+3)^2$で割り切れるとき,$a$と$b$の値は$a=[エ]$,$b=[オ]$である.
(2)数列$\{a_n\}$は次の条件によって定められるとする.
\[ a_1=1,\quad a_{n+1}=3a_n+2 \quad (n=1,\ 2,\ 3,\ \cdots) \]
$a_{n+1}=3a_n+2$は$a_{n+1}+1=[カ](a_n+[キ])$と変形できる.よって$b_n=a_n+[キ] (n=1,\ 2,\ 3,\ \cdots)$とおくと,数列$\{b_n\}$は等比数列となり,その一般項は$[ク]$である.よって,数列$\{a_n\}$の一般項は$[ケ]$である.また,$s_1=2$,$s_{n+1}=4s_n+3 (n=1,\ 2,\ 3,\ \cdots)$という条件で定められる数列$\{s_n\}$の一般項は$[コ]$である.
成城大学 私立 成城大学 2012年 第3問
ある日に情報$\mathrm{I}$が伝わると,新たにその情報を知った人のうち

$10 \, \%$が翌日に$2$人ずつに直接会って伝え
$20 \, \%$が翌日に$4$人ずつにメールで伝え
$10 \, \%$が翌日にウェブサイトに書き込みをしてそれぞれ$20$人ずつが読む

とする.

情報$\mathrm{I}$を知った人は翌日にのみ他の人に伝え,同じ人に重複して伝わることはなく,その変形や誤りは起こらないと仮定する.$1$日目に情報$\mathrm{I}$が$100$人に伝わるとして,以下の問いに答えよ.

(1)$3$日目に初めて情報$\mathrm{I}$を知る人の数を求めよ.
(2)$n$日目までに情報$\mathrm{I}$を知る人の総数を求めよ.
(3)情報$\mathrm{I}$を知る人の総数が$10$万人を初めて超えるのは何日目か.
山梨大学 国立 山梨大学 2011年 第3問
放物線$y=x^2+2x$を$C_1$,放物線$y=x^2-2x+2$を$C_2$とする.

(1)$C_1$と$C_2$を$y=(x-p)^2+q$の形に変形せよ.また,$C_1$と$C_2$の交点の座標を求めよ.
(2)$C_1$と$C_2$の両方に接する直線$\ell$の方程式を求めよ.
(3)$C_1$と$C_2$および$\ell$で囲まれた部分の面積を求めよ.
関西学院大学 私立 関西学院大学 2011年 第1問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)条件$\displaystyle a_1=-\frac{5}{6}$,$6a_{n+1}-3a_n+4=0$によって定められる数列$\{a_n\}$について考える.この漸化式は$a_{n+1}+[$*$]=[ ](a_n+[$*$])$と変形できる.したがって,一般項は$a_n=[ ]$である.
(2)方程式$(x+1)(x-2)(x+3)(x-4)=-24$について,$X=x^2-x$とおくと,$X$の$2$次方程式$[ ]=0$を得る.その解は$X=[$**$],\ [$***$]$(ただし,$[$**$]<[$***$]$)である.元の方程式の最大の解は$x=[ ]$である.
(3)箱$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$があり,それぞれに$4$個のボールが入っている.各箱のボールには,$1$から$4$までの番号がつけられている.箱$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$からボールを$1$個ずつ取り出し,出た数をそれぞれ$a,\ b,\ c,\ d$とする.$a,\ b,\ c,\ d$の最大の数が$3$以下である場合は$[ ]$通りあり,最大の数が$4$である場合は$[ ]$通りある.また,$a,\ b,\ c,\ d$について,$a+b+c+d=15$となる場合は$[ ]$通りある.
防衛大学校 国立 防衛大学校 2010年 第2問
関数$f(x)=3 \sin x+4 \cos x$について,次の問に答えよ.ただし,$0 \leqq x \leqq \pi$とする.

(1)$f(x)=r \sin (x+\alpha)$と変形したとき,$r$の値と$\cos \alpha,\ \sin \alpha$の値を求めよ.ただし,$r>0,\ -\pi<\alpha \leqq \pi$とする.
(2)$f(x)$の最大値$M$と最小値$m$を求めよ.
(3)(1)の$r$と$\alpha$に対し,$\displaystyle f(x) \geqq \frac{r}{2}$となる$x$の範囲を$\alpha$を用いて表せ.
山梨大学 国立 山梨大学 2010年 第6問
行列$A=\left( \begin{array}{cc}
\displaystyle\frac{3}{2} & -\displaystyle\frac{\sqrt{3}}{2} \\
\displaystyle\frac{\sqrt{3}}{2} & \displaystyle\frac{3}{2}
\end{array} \right)$と点$\mathrm{O}(0,\ 0)$,点$\mathrm{X}_0(1,\ 0)$がある.行列$A$で表される移動によって点$\mathrm{X}_0$は点$\mathrm{X}_1$へ移り,行列$A^2$で表される移動によって点$\mathrm{X}_0$は点$\mathrm{X}_2$へ移るものとする.以下同様に正の整数$n$について,行列$A^n$で表される移動によって点$\mathrm{X}_0$は点$\mathrm{X}_n$へ移るものとする.

(1)行列$A$は,$\alpha>0$と$\displaystyle 0<\theta<\frac{\pi}{2}$を使って$A=\alpha \left( \begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$と変形できる.$\alpha$と$\theta$の値を求めよ.
(2)$\triangle \mathrm{OX}_0 \mathrm{X}_1$の面積$S_1$を求めよ.
(3)四角形$\mathrm{OX}_0 \mathrm{X}_1 \mathrm{X}_2$の面積$S_2$を求めよ.
(4)$1 \leqq n<12$とする.線分$\mathrm{OX}_0$,$\mathrm{X}_0 \mathrm{X}_1$,$\cdots$,$\mathrm{X}_{n-1} \mathrm{X}_n$,$\mathrm{X}_n \mathrm{O}$で囲まれる部分の面積$S_n$を$n$を使って表せ.
スポンサーリンク

「変形」とは・・・

 まだこのタグの説明は執筆されていません。