タグ「変化」の検索結果

6ページ目:全110問中51問~60問を表示)
九州工業大学 国立 九州工業大学 2013年 第1問
頂点が$\mathrm{O}$で,各辺の長さが$1$である正四角錐$\mathrm{O}$-$\mathrm{ABCD}$がある.辺$\mathrm{OA}$,$\mathrm{CO}$を$t:1-t \ (0<t<1)$に内分する点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とし,辺$\mathrm{OD}$を$k:1-k \ (0<k<1)$に内分する点を$\mathrm{R}$とする.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおく.次に答えよ.

(1)$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また,内積$\overrightarrow{a} \cdot \overrightarrow{c}$の値を求めよ.
(2)内積$\overrightarrow{\mathrm{BR}} \cdot \overrightarrow{\mathrm{PQ}}$を$k,\ t$を用いて表せ.
(3)点$\mathrm{R}$が$3$点$\mathrm{P}$,$\mathrm{B}$,$\mathrm{Q}$の定める平面上にあるとする.

(i) $k$を$t$を用いて表せ.
(ii) $t$の値が変化するとき,$k$の最大値を求めよ.また,$k$が最大値をとるときの四角形$\mathrm{PBQR}$の面積$S$を求めよ.
筑波大学 国立 筑波大学 2013年 第6問
楕円$\displaystyle C:\frac{x^2}{16}+\frac{y^2}{9}=1$の,直線$y=mx$と平行な$2$接線を$\ell_1$,$\ell_1^\prime$とし,$\ell_1$,$\ell_1^\prime$に直交する$C$の$2$接線を$\ell_2$,$\ell_2^\prime$とする.

(1)$\ell_1$,$\ell_1^\prime$の方程式を$m$を用いて表せ.
(2)$\ell_1$と$\ell_1^\prime$の距離$d_1$および$\ell_2$と$\ell_2^\prime$の距離$d_2$をそれぞれ$m$を用いて表せ.ただし,平行な$2$直線$\ell$,$\ell^\prime$の距離とは,$\ell$上の$1$点と直線$\ell^\prime$の距離である.
(3)$(d_1)^2+(d_2)^2$は$m$によらず一定であることを示せ.
(4)$\ell_1$,$\ell_1^\prime$,$\ell_2$,$\ell_2^\prime$で囲まれる長方形の面積$S$を$d_1$を用いて表せ.さらに$m$が変化するとき,$S$の最大値を求めよ.
大阪教育大学 国立 大阪教育大学 2013年 第4問
ある種の粒子は出現して$1$時間後に次のように変化する.

確率$\displaystyle \frac{1}{3}$で$2$個の新しい粒子になる.

確率$\displaystyle \frac{1}{2}$で$1$個の新しい粒子になる.

確率$\displaystyle \frac{1}{6}$で消滅する.

$1$個の粒子から始まるものとして,次の問いに答えよ.

(1)$2$時間後に粒子が$2$個になっている確率を求めよ.
(2)$3$時間後に粒子が$5$個になっている確率を求めよ.
(3)$n$を自然数とする.$n$時間後に最大でいくつの粒子があるか.その個数と,そうなる確率を$n$を用いて表せ.
自治医科大学 私立 自治医科大学 2013年 第23問
$9$つの辺の長さの総和が$9$である正三角柱(底面が正三角形である三角柱)の体積を$V$とする.各辺の長さが変化するとき,$V$の最大値を$M$とする.$\displaystyle \frac{12}{\sqrt{3}}M$の値を求めよ.
龍谷大学 私立 龍谷大学 2013年 第3問
$\angle \mathrm{B}=90^\circ$の直角三角形$\mathrm{ABC}$において,$\mathrm{AC}=1$,$\angle \mathrm{A}=\theta$とする.点$\mathrm{B}$から辺$\mathrm{AC}$に下ろした垂線と辺$\mathrm{AC}$の交点を$\mathrm{H}$とする.さらに,点$\mathrm{H}$から辺$\mathrm{AB}$に下ろした垂線と辺$\mathrm{AB}$の交点を$\mathrm{K}$とする.

(1)$\mathrm{HK}$を$\theta$をもちいて表しなさい.
(2)$\theta$が変化するとき,$\mathrm{HK}$の最大値を求めなさい.
広島修道大学 私立 広島修道大学 2013年 第2問
$t$を実数とする.放物線$y=x^2-4tx+2t+3$について次の問に答えよ.

(1)この放物線と$x$軸の共有点の個数を求めよ.
(2)$t$がすべての実数値をとって変化するとき,この放物線の頂点の軌跡を求めよ.
名城大学 私立 名城大学 2013年 第2問
図に示す一辺の長さが$10a (a>0)$の正方形$\mathrm{ABCD}$がある.辺上を車両が動くとき,次の問に答えよ.

(1)車両$\mathrm{Q}$が,一定の速度$a$で点$\mathrm{C}$を出発し,点$\mathrm{D}$を経由して点$\mathrm{A}$まで動くものとする.出発時刻を$t=0$とし,時間$t$経過後の点$\mathrm{A}$と車両$\mathrm{Q}$との直線距離を$t$と$a$を用いて表せ.
(2)$(1)$の条件下で,点$\mathrm{A}$と車両$\mathrm{Q}$との間で通信が行われる.通信に必要な電力$y$は,$2$点間の直線距離の$2$乗である.時間$t$経過後の電力$y$の変化を横軸に$t$,縦軸を$y$としたグラフに示せ.
(3)$(1)$の条件下で,車両$\mathrm{P}$が,一定の速度$a$で点$\mathrm{A}$を出発し,点$\mathrm{B}$を経由して点$\mathrm{C}$へ向かうものとする.出発時刻を$t=0$とし,時間$t$経過後の車両$\mathrm{P}$と車両$\mathrm{Q}$との直線距離の$2$乗$z$の変化を横軸に$t$,縦軸を$z$としたグラフに示せ.
(図は省略)
千葉工業大学 私立 千葉工業大学 2013年 第4問
$\mathrm{O}$を原点とする$xy$平面上に,放物線$\displaystyle C:y=\frac{1}{4}x^2$がある.点$\mathrm{A}(2,\ 8)$を通る直線$\ell:y=t(x-2)+8$(ただし,$t$は定数)と$C$との$2$つの交点を結ぶ線分の中点を$\mathrm{M}(X,\ Y)$とするとき,次の問いに答えよ.

(1)$C$と$\ell$との$2$つの交点の$x$座標を$\alpha,\ \beta$とすると,$\alpha+\beta=[ア] t$である.$X,\ Y$を$t$を用いて表すと,$X=[イ] t$,$Y=[ウ] t^2-[エ] t+[オ]$である.
(2)$\mathrm{M}$が直線$\mathrm{OA}$上の点であるような$t$の値は小さい方から順に$[カ]$,$[キ]$である.
(3)$t$が$[カ]$から$[キ]$まで変化するときの$\mathrm{M}$の軌跡は,放物線
\[ D:y=\frac{[ク]}{[ケ]}x^2-x+[コ] \]
の$[サ] \leqq x \leqq [シ]$の部分である.
(4)$[カ] \leqq t \leqq [キ]$において,直線$\mathrm{OM}$が$D$に接するとき,$X=[ス]$である.また,$t$が$[カ]$から$[キ]$まで変化するとき,線分$\mathrm{OM}$が通過する部分の面積は$\displaystyle \frac{[セソ]}{[タ]}$である.
北里大学 私立 北里大学 2013年 第2問
次の文中の$[ア]$~$[ホ]$にあてはまる最も適切な数を答えなさい.

放物線$y=-x^2+1$を$C_1$,また$y=(x-t)^2+kt+1$を$C_2$とする.ここで$k>0$とし,$t$は任意の実数値をとるものとする.$t$の値が変化するに従い,$C_2$の頂点の軌跡はある直線になる.この直線を$L$とする.

(1)$k=1$の場合を考える.このとき,直線$L$の方程式は,$y=[ア]x+[イ]$である.また$C_1$および$L$によって囲まれた部分の面積は$\displaystyle \frac{[ウ]}{[エ]}$である.
(2)$\displaystyle k=\frac{1}{2}$の場合を考える.$C_1$と$C_2$がただ$1$つの点で接する場合,接点の座標は
\[ (x,\ y)=([オ],\ [カ]) \]
および
\[ (x,\ y)=\left( \frac{[キ]}{[ク]},\ \frac{[ケ]}{[コ]} \right) \]
である.
$C_1$と$C_2$が$2$つの共有点をもつのは,$[サ]<t<[シ]$のときである.このとき,それらの$x$座標を$\alpha,\ \beta (\alpha<\beta)$とすれば,
\[ \alpha+\beta=[ス]t+[セ],\quad \alpha\beta=\frac{[ソ]}{[タ]}t^2+\frac{[チ]}{[ツ]}t+[テ] \]
である.また,$C_1$と$C_2$によって囲まれた部分の面積$S(t)$は,
\[ S(t)=\frac{1}{[ト]} ([ナ]t^2+[ニ]t+[ヌ])^p,\quad \text{ただし} p=\frac{[ネ]}{[ノ]} \]
である.この面積は$\displaystyle t=\frac{[ハ]}{[ヒ]}$のとき最大値$\displaystyle \frac{[フ]}{[ヘ][ホ]}$をとる.
同志社大学 私立 同志社大学 2013年 第2問
$\mathrm{O}$を原点とする座標平面に点$\mathrm{A}(2,\ 1)$と点$\mathrm{B}(1,\ -2)$をとる.実数$\theta (0 \leqq \theta<2\pi)$に対して点$\mathrm{P}$は$\overrightarrow{\mathrm{OP}}=(\cos \theta) \overrightarrow{\mathrm{OA}}+(1-\sin \theta) \overrightarrow{\mathrm{OB}}$を満たすものとする.次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を求めよ.
(2)$\theta$が$0 \leqq \theta<2\pi$を満たす値をとって変化するとき,点$\mathrm{P}$の軌跡を求めよ.
(3)内積$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}$の最大値と,そのときの$\theta$の値を求めよ.
スポンサーリンク

「変化」とは・・・

 まだこのタグの説明は執筆されていません。