タグ「増減表」の検索結果

1ページ目:全25問中1問~10問を表示)
福岡大学 私立 福岡大学 2016年 第3問
曲線$C:y=2 \cos^3 x+3 \cos x (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)曲線$C$の増減表を書き,変曲点を求めよ.
(2)曲線$C$と$x$軸,$y$軸で囲まれる部分の面積を求めよ.
岩手大学 国立 岩手大学 2015年 第1問
関数$f(x)=x^3-3x$について,以下の問いに答えよ.

(1)関数$f(x)$の増減表をかいて極値を求め,$y=f(x)$のグラフの概形を描け.
(2)$2$次関数$g(x)$で,次の$3$項目が$f(x)$と一致するものを求めよ.
$①$ \ 極小値 \quad $②$ \ 極小値をとるときの$x$の値 \quad $③$ \ $x=0$における値
(3)$(2)$で求めた$g(x)$に対して,定積分$\displaystyle \int_{-1}^1 |g(x)| \, dx$を求めよ.
早稲田大学 私立 早稲田大学 2015年 第1問
次の問いに答えよ.

(1)$\cos 3 \theta$を$\cos \theta$のみの式で表せ.
(2)次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) $3$次関数$\displaystyle f(x)=x^3-\frac{3}{4}x$について増減表を書き,$y=f(x)$のグラフの概形を描け.
(ii) $y=f(x)$のグラフと直線$y=k$が共有点を$2$つまたは$3$つもつような定数$k$の値の範囲を求めよ.
また,$k$がこの範囲を動くとき,共有点の$x$座標のとる値の範囲を求めよ.

(3)$3$次方程式$\displaystyle x^3-\frac{3}{4}x-\frac{1}{8}=0$の解を$x=\cos \theta (0 \leqq \theta \leqq \pi)$とおくとき,$\theta$の値を求めよ.
会津大学 公立 会津大学 2015年 第5問
関数$y=xe^{-x}$のグラフを$C$とするとき,以下の問いに答えよ.

(1)関数$y=xe^{-x}$の増減,極値,$C$の凹凸,変曲点を調べて,増減表をつくり,$C$を座標平面上に描け.ただし,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$を用いてもよい.
(2)$C$の変曲点における接線を$\ell$とする.$\ell$と$x$軸の交点を求めよ.
(3)$C$と$\ell$と$x$軸で囲まれた部分の面積を求めよ.
福岡女子大学 公立 福岡女子大学 2015年 第3問
以下の問に答えなさい.

(1)定積分$\displaystyle \int_0^3 (9-x^2) \, dx$の値を求めなさい.
(2)$k>0$とする.定義域を$-3 \leqq x \leqq 3$とする関数
\[ f(x)=k(9-x^2) \]
のグラフ$y=f(x)$と$x$軸で囲まれる部分の面積が$1$となるような$k$の値を求めなさい.
(3)$k$は$(2)$で求めた値とし,$-3 \leqq t \leqq 3$とする.$x \leqq t$のとき,グラフ$y=f(x)$,$x$軸および直線$x=t$で囲まれた部分の面積$F(t)$を$t$の式で表しなさい.
(4)$(3)$で求めた$t$の関数$F(t)$の増減表を作成し,関数$y=F(t)$のグラフの概形を描きなさい.
福岡女子大学 公立 福岡女子大学 2015年 第3問
関数
\[ f(x)=\frac{2}{x-1}-\frac{1}{x-2} \quad (x \neq 1,\ x \neq 2) \]
について,以下の問に答えなさい.

(1)$2$つの関数$\displaystyle y=\frac{2}{x-1} (x \neq 1)$と$\displaystyle y=-\frac{1}{x-2} (x \neq 2)$のグラフの概形を同じ座標平面上に描きなさい.
(2)$f(x)$の増減表を作成し,$f(x)$の極小値が$3+2 \sqrt{2}$,極大値が$3-2 \sqrt{2}$となることを示しなさい.
(3)関数$y=f(x)$のグラフの概形を座標平面上に描きなさい.
大阪府立大学 公立 大阪府立大学 2015年 第5問
座標平面上において,原点$\mathrm{O}$を中心とする半径$1$の円$C_0$に,半径$1$の円$C_1$が外接しながらすべることなく回転する.点$\mathrm{A}$を動く円$C_1$の中心とし,点$\mathrm{P}$を円$C_1$の円周上の定点とする.最初,点$\mathrm{A}$は座標$(2,\ 0)$の位置にあり,点$\mathrm{P}$は座標$(1,\ 0)$の位置にある.円$C_1$が円$C_0$の周りを反時計まわりに一周し,点$\mathrm{A}$が座標$(2,\ 0)$に戻ってくるとき,点$\mathrm{P}$のえがく曲線を$C$とする.動径$\mathrm{OA}$が$x$軸の正の部分から角$\theta (0 \leqq \theta \leqq 2\pi)$だけ回転した位置にあるとき,点$\mathrm{P}$の座標を$(x(\theta),\ y(\theta))$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{P}$の座標$(x(\theta),\ y(\theta))$について,
\[ x(\theta)=2 \cos \theta-\cos 2\theta,\quad y(\theta)=2 \sin \theta-\sin 2\theta \]
が成り立つことを示せ.
(2)導関数$\displaystyle \frac{d}{d\theta} x(\theta)$を求め,$x(\theta)$の$\theta$に関する増減表を作成せよ.ただし,凹凸については言及しなくてよい.
(3)曲線$C$で囲まれる図形の面積$S$を求めよ.
浜松医科大学 国立 浜松医科大学 2014年 第2問
関数$\displaystyle f(x)=\frac{3 \sqrt{3}}{\sin x}-\frac{1}{\cos x} \left( 0<|x|<\frac{\pi}{2} \right)$を考える.以下の問いに答えよ.

(1)$y=f(x)$の増減表を作成し,極値を求めよ.
(2)$f(x)$の第$2$次導関数$f^{\prime\prime}(x)$は,$3$次式$P(t)=t(2t^2-1)$を用いて,
\[ f^{\prime\prime}(x)=3 \sqrt{3} P \left( \frac{1}{\sin x} \right)-P \left( \frac{1}{\cos x} \right) \]
と表されることを示せ.また,$\displaystyle 0<x_1<x_2<\frac{\pi}{2}$のとき$f^{\prime\prime}(x_1)>f^{\prime\prime}(x_2)$となることを示せ.
(3)$k$を定数とするとき,方程式$f(x)=k$の異なる実数解は何個あるか.$k$の値によって分類せよ.
(4)$y=f(x)$の変曲点はただ$1$つ存在することを示せ.また,この変曲点が第何象限にあるか,調べよ.
神奈川大学 私立 神奈川大学 2014年 第3問
$\displaystyle f(x)=-\frac{1}{3}x^3+\frac{1}{2}x^2+2$とする.以下の問いに答えよ.

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$f(x)$の増減表をかき,極値を求めよ.
(3)$y=f^\prime(x)$のグラフと$x$軸で囲まれた部分の面積を$S_1$とする.$S_1$を求めよ.
(4)$0<k<1$とする.直線$y=kx$と$y=f^\prime(x)$のグラフで囲まれた部分の面積を$S_2$とする.$S_2$を$k$の式で表せ.
(5)$S_2$が$S_1$の$\displaystyle \frac{1}{8}$となるときの$k$の値を求めよ.
中部大学 私立 中部大学 2014年 第2問
$0<x<\pi$で定義された関数$\displaystyle f(x)=\frac{1}{\sin x}$について,次の問いに答えよ.

(1)$\displaystyle f \left( \frac{\pi}{3} \right)$を求めよ.
(2)$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.また,$f^{\prime\prime}(x)>0$となることを示せ.これらの結果を増減表に書き,曲線$y=f(x)$のグラフの概形をかけ.
(3)$0 \leqq t \leqq 1$に対し,$0<a \leqq x<\pi$を満たす任意の$a$と$x$を考えると,
\[ tf(a)+(1-t)f(x) \geqq f(at+(1-t)x) \]
が成り立つことを示せ.
(4)三角形$\mathrm{ABC}$のそれぞれの角を$A,\ B,\ C$とすると$\displaystyle \frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C} \geqq 2 \sqrt{3}$が成り立つことを証明せよ.
スポンサーリンク

「増減表」とは・・・

 まだこのタグの説明は執筆されていません。