タグ「場合の数」の検索結果

7ページ目:全162問中61問~70問を表示)
愛媛大学 国立 愛媛大学 2014年 第1問
$n$を$0$以上の整数とする.点$\mathrm{P}$,$\mathrm{Q}$は,$1$辺の長さが$1$である正四面体$\mathrm{ABCD}$の頂点の上を,以下の条件$(\mathrm{a})$,$(\mathrm{b})$を満たしながら移動する.

\mon[$(\mathrm{a})$] 時刻$t=0$において,点$\mathrm{P}$は頂点$\mathrm{A}$に,点$\mathrm{Q}$は頂点$\mathrm{B}$にいる.
\mon[($\mathrm{b})$] 時刻$t=n+1$において,点$\mathrm{P}$と点$\mathrm{Q}$は各々,時刻$t=n$のときにいた頂点から,他の$3$つの頂点のいずれかに,それぞれ$\displaystyle \frac{1}{3}$の確率で移動する.

時刻$t=n$における点$\mathrm{P}$と点$\mathrm{Q}$の間の距離を$d_n$とおく.$d_n$の値は$0$または$1$である.時刻$t=n$において$d_n=1$となる確率を$p_n$とする.

(1)時刻$t=1$とする.

(i) 点$\mathrm{P}$が頂点$\mathrm{C}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.
(ii) 点$\mathrm{P}$が頂点$\mathrm{B}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.

(2)$p_1$を求めよ.
(3)$d_1+d_2=1$となる確率を求めよ.
(4)$p_{n+1}$を$p_n$で表し,$p_n$を求めよ.
京都教育大学 国立 京都教育大学 2014年 第4問
次の問に答えよ.

(1)正四面体の$4$面を赤,青,黄,緑の$4$色すべてを使って塗り分ける方法は$2$通りある.ただし,正四面体を回転させて一致する塗り方は同じとみなす.この$2$通りを図示せよ.
(2)立方体の$6$面を赤,青,黄,緑,紫,茶の$6$色すべてを使って塗り分ける.次の塗り分け方はそれぞれ何通りあるか求めよ.ただし,立方体を回転させて一致する塗り方は同じとみなす.

(i) 赤と青が隣り合う塗り方.
(ii) 赤と青が隣り合わない塗り方.
津田塾大学 私立 津田塾大学 2014年 第1問
次の問に答えよ.

(1)$\mathrm{a}$,$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$,$\mathrm{d}$の$5$文字を$1$列に並べるとき,$\mathrm{a}$が隣り合わない並べ方は何通りあるか.
(2)${10}^{\frac{n}{77}}$が$5$より大きくなる最小の自然数$n$を求めよ.ただし$\log_{10}2=0.3010$とする.
(3)$\displaystyle 0<x<\frac{\pi}{3}$のとき,$\displaystyle \cos x+\cos \left( \frac{\pi}{3}-x \right)$の取りうる値の範囲を答えよ.
日本女子大学 私立 日本女子大学 2014年 第4問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$の$6$人の女子と$\mathrm{W}$,$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$の$4$人の男子の合計$10$人を$7$人と$3$人の$2$チームに分ける.ただし,どちらのチームにも少なくとも$1$人の男子が属するようにする.

(1)このようなチームの分け方は何通りあるか.
(2)$\mathrm{A}$と$\mathrm{B}$が同じチームに属するようなチームの分け方は何通りあるか.
(3)$\mathrm{F}$と$\mathrm{W}$が同じチームに属するようなチームの分け方は何通りあるか.
(4)$\mathrm{A}$と$\mathrm{B}$が異なるチームに属し,かつ,$\mathrm{F}$と$\mathrm{W}$も異なるチームに属するようなチームの分け方は何通りあるか.
早稲田大学 私立 早稲田大学 2014年 第1問
次の空欄$[$1$]$から$[$6$]$にあてはまる数または数式を記入せよ.

(1)$3$次曲線$y=x^3-6x^2+11x-4$と直線$y=ax$が第$1$象限の相異なる$3$点で交わるような定数$a$の範囲は$[$1$]<a<[$2$]$である.
(2)硬貨を投げ,$3$回つづけて表が出たら終了する.$n$回以下で終了する場合の数を$f_n$とする.$f_{10}=[$3$]$である.
(3)不等式$\displaystyle \frac{a}{19}<\log_{10}7<\frac{b}{13}$を満たす最大の整数$a$と最小の整数$b$は$a=[$4$]$,$b=[$5$]$である.必要に応じて次の事実を用いてもよい.
\[ \begin{array}{lll}
7^1=7 & 7^2=49 & 7^3=343 \\
7^4=2401 & 7^5=16807 & 7^6=117649 \\
7^7=823543 & 7^8=5764801 & 7^9=40353607 \\
7^{10}=282475249 & 7^{11}=1977326743 & 7^{12}=13841287201 \\
7^{13}=96889010407 & 7^{14}=678223072849
\end{array} \]
(4)四面体$\mathrm{ABCD}$は,$4$つの面のどれも$3$辺の長さが$7,\ 8,\ 9$の三角形である.この四面体$\mathrm{ABCD}$の体積は$[$6$]$である.
成城大学 私立 成城大学 2014年 第3問
図のように,$1$から$9$までの異なる自然数の書かれたボタンを$3$行$3$列に並べる.
(図は省略)

(1)ボタンの並べ方は,全部で何通りあるか.
(2)縦一列の$3$つのボタンの数字の和が,すべて奇数となる並べ方は何通りあるか.
(3)縦一列の$3$つのボタンの数字の和が,すべて$3$の倍数となる並べ方は何通りあるか.
同志社大学 私立 同志社大学 2014年 第1問
次の$[ ]$に適する数または式を記入せよ.

袋の中に$1$から$9$までの数字が$1$つずつ書かれた$9$個の球が入っている.この袋から球を$1$個取り出し,取り出した球の数字を調べて袋に戻すことを$2$回行うとき,取り出した球に書かれた数字のうちの最大値を$X$とする.$X$が$3$以下となる場合の数は$[ア]$通りである.また,$X$が$4$以下となる場合の数は$[イ]$通りである.$X$が$3$となる場合の数は$[ウ]$通りであるので,$X$が$3$と等しくなる確率は$[エ]$である.したがって,$i=1,\ 2,\ 3,\ \cdots,\ 9$に対して,$X$が$i$と等しくなる確率は$[オ]$であり,$X$の期待値は$[カ]$である.
次に,この袋から球を$1$個取り出し,取り出した球の数字を調べて袋に戻すことを$k$回行うとき($k$は自然数),取り出した球に書かれた数字のうちの最大値を$Y$とする.$Y$が$j (j=1,\ 2,\ 3,\ \cdots,\ 9)$以下となる場合の数は$[キ]$通りであり,$Y$が$j$と等しくなる場合の数は$[ク]$通りである.したがって,$Y$が$j$と等しくなる確率は$[ケ]$であり,$Y$の期待値は$\displaystyle 9-\frac{1}{9^k} \sum_{j=1}^8 [コ]$である.
大阪府立大学 公立 大阪府立大学 2014年 第1問
次の問いに答えよ.

(1)次の文章の$[ ]$に適する答えを記入せよ.
次のように$1$から$5$までの数字が書かれたカードを用意する.
\[ \fbox{ $1$ } \quad \fbox{ $2$ } \quad \fbox{ $3$ } \quad \fbox{ $4$ } \quad \fbox{ $5$ } \]
それに次のように$4$の数字が書かれたカードを$1$枚加える.
\[ \fbox{ $1$ } \quad \fbox{ $2$ } \quad \fbox{ $3$ } \quad \fbox{ $4$ } \quad \fbox{ $5$ } \quad \fbox{ $4$ } \]
この$6$枚のカードを$1$列に並べて$6$桁の整数をつくる.このとき,つくられる相異なる整数の場合の数は$[$①$]$であり,その中で$5$の倍数となる相異なる整数の場合の数は$[$②$]$である.次に,この$6$枚のカードに$0$と書かれたカードを加えて$7$枚のカードにし,この$7$枚のカードを$1$列に並べる.左端に$0$以外のカードが来ることによって$7$桁の相異なる整数になる場合の数は$[$③$]$である.その中で,$1$のカードと$2$のカードが隣りあう相異なる整数の場合の数は$[$④$]$である.
(2)次の不定積分を求めよ.ただし,積分定数は省略してよい.
\[ \int x \log (1+x) \, dx \]
奈良県立医科大学 公立 奈良県立医科大学 2014年 第7問
$x^3=1$の解のうち$1$でないものの$1$つを$\omega$とし,$y=(x_1+\omega x_2+\omega^2 x_3)^3$を考える.$x_1$,$x_2$,$x_3$に$1$から$3$までの自然数を重複を許さないように代入するとき$y$が取り得る値は何通りあるか.
高崎経済大学 公立 高崎経済大学 2014年 第2問
あるクラスに男子$4$名($\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$),女子$5$名($\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$,$\mathrm{I}$),計$9$名の生徒がいる.以下の各問に答えよ.

このクラスでは,下図のように先生$1$名を含めて$10$名で$1$つの丸いテーブルを囲んで座っている.このとき,以下の並び方について答えよ.
(図は省略)
(1)先生の右隣りに男子生徒が座る並び方は何通りあるか.
(2)先生の両隣りに男子生徒が座る並び方は何通りあるか.
(3)女子生徒同士が隣り合わないように座る並び方は何通りあるか.
いま,このクラスで$4$名の発表者を選ぶことになった.このとき,以下の発表者の選び方について答えよ.
(4)生徒全員からの発表者の選び方は何通りあるか.
(5)男子生徒から$2$名かつ女子生徒から$2$名の発表者の選び方は何通りあるか.
スポンサーリンク

「場合の数」とは・・・

 まだこのタグの説明は執筆されていません。