タグ「垂線」の検索結果

9ページ目:全330問中81問~90問を表示)
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)数列$\{a_n\}$の第$1$項から第$n$項までの和$S_n$が$3S_n=a_n+2n-1$を満たすならば,
\[ a_n=\frac{[ア]}{[イ]} \left( \frac{[ウ]}{[エ]} \right)^n+\frac{[オ]}{[カ]} \]
である.
(2)$t$を実数とする.座標空間において,点$(2t,\ 1,\ -t)$を通りベクトル$(-1,\ 2,\ 1)$と平行な直線を$\ell$とする.点$\mathrm{P}$の座標を$(0,\ 2,\ 0)$とする.

(i) 点$\mathrm{P}$から$\ell$に垂線$\mathrm{PH}$を下ろすとき,
\[ \mathrm{PH}^2=\frac{[キ]}{[ク]}t^2+[ケ]t+\frac{[コ]}{[サ]} \]
である.
(ii) 点$\mathrm{P}$を中心とする半径$2$の球面を$S$とする.$S$と$\ell$が異なる$2$点で交わるとき,その$2$点間の距離は$\displaystyle t=\frac{[シ]}{[ス]}$のとき最大値をとる.
上智大学 私立 上智大学 2015年 第2問
$\mathrm{O}$を原点とする座標空間において,$\mathrm{OA}=2$,$\mathrm{OB}=1$,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=-1$を満たす点$\mathrm{A}$と点$\mathrm{B}$を考え,直線$\mathrm{AB}$上に点$\mathrm{P}$をとる.ただし,$\mathrm{AB}>\mathrm{AP}$とする.

(1)$\mathrm{OP} \perp \mathrm{AB}$のとき,$\displaystyle \mathrm{OP}=\frac{\sqrt{[サ]}}{[シ]}$である.
(2)$\triangle \mathrm{OBP}$が二等辺三角形であるとき,
\[ \mathrm{OP}^2=1,\quad \mathrm{AP}=\frac{[ス]}{[セ]} \sqrt{[ソ]}, \]
または
\[ \mathrm{OP}^2=[タ]+\frac{[チ]}{[ツ]} \sqrt{[テ]},\quad \mathrm{AP}=[ト]+\sqrt{[ナ]}, \]
または
\[ \mathrm{OP}^2=\frac{[ニ]}{[ヌ]},\quad \mathrm{AP}=\frac{[ネ]}{[ノ]} \sqrt{[ハ]} \]
である.ただし,
\[ \frac{[ス]}{[セ]} \sqrt{[ソ]}<[ト]+\sqrt{[ナ]}<\frac{[ネ]}{[ノ]} \sqrt{[ハ]} \]
とする.
(3)座標空間に,$\mathrm{OC}=2$,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=1$,$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=1$を満たす点$\mathrm{C}$をとる.$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$の定める平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に垂線$\mathrm{CQ}$を下ろす.このとき,

$\displaystyle \mathrm{CQ}=\frac{\sqrt{[ヒ]}}{[フ]}$であり,四面体$\mathrm{OABC}$の体積は$\displaystyle \frac{\sqrt{[ヘ]}}{[ホ]}$である.
東北医科薬科大学 私立 東北医科薬科大学 2015年 第1問
三角形$\mathrm{OAB}$は$\mathrm{OA}=6$,$\mathrm{OB}=2 \sqrt{5}$,$\mathrm{AB}=2 \sqrt{2}$である.点$\mathrm{P}$は辺$\mathrm{AB}$を$k:(1-k)$に,点$\mathrm{Q}$は辺$\mathrm{OB}$を$(1-k^2):k^2$に内分する点である.ただし$0<k<1$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.このとき,次の問に答えなさい.

(1)$\overrightarrow{\mathrm{OP}}=([ア]-[イ]) \overrightarrow{a}+[ウ] \overrightarrow{b}$である.
(2)ベクトル$\overrightarrow{a},\ \overrightarrow{b}$の内積は$\overrightarrow{a} \cdot \overrightarrow{b}=[エオ]$である.
(3)点$\mathrm{B}$から直線$\mathrm{OA}$に下ろした垂線を$\mathrm{BR}$とおくと$\displaystyle \overrightarrow{\mathrm{OR}}=\frac{[カ]}{[キ]} \overrightarrow{a}$である.
(4)$\displaystyle \overrightarrow{\mathrm{RQ}}=-\frac{[ク]}{[ケ]} \overrightarrow{a}+([コ]-{[サ]}^{\mkakko{シ}}) \overrightarrow{b}$である.
(5)ベクトル$\overrightarrow{\mathrm{RP}}$と$\overrightarrow{\mathrm{RQ}}$の内積は
\[ \overrightarrow{\mathrm{RP}} \cdot \overrightarrow{\mathrm{RQ}}=[ス]k^3-[セ]k^2+[ソ]k \]
である.この値は$\displaystyle k=\frac{[タ]}{[チ]}$で最大値$\displaystyle \frac{[ツテ]}{[トナ]}$をとる.
獨協医科大学 私立 獨協医科大学 2015年 第3問
$a,\ b$を実数の定数とする.$\mathrm{O}$を原点とする座標空間内に$3$点$\mathrm{A}(1,\ 2,\ 0)$,$\mathrm{B}(2,\ 0,\ 4)$,$\mathrm{C}(a,\ b,\ 1)$がある.

三角形$\mathrm{OAB}$において,点$\mathrm{O}$から直線$\mathrm{AB}$に下ろした垂線と直線$\mathrm{AB}$の交点を$\mathrm{H}$とする.点$\mathrm{H}$の座標は
\[ \left( \frac{[ア]}{[イ]},\ \frac{[ウエ]}{[オ]},\ \frac{[カ]}{[キ]} \right) \]
である.
点$\mathrm{A}$から直線$\mathrm{OB}$に下ろした垂線と線分$\mathrm{OH}$の交点を$\mathrm{K}$とする.点$\mathrm{K}$の座標は
\[ \left( \frac{[ク]}{[ケ]},\ \frac{[コ]}{[サ]},\ \frac{[シ]}{[ス]} \right) \]
である.
$\overrightarrow{\mathrm{OA}}$は$\overrightarrow{\mathrm{BC}}$に垂直で,$\overrightarrow{\mathrm{OB}}$は$\overrightarrow{\mathrm{AC}}$に垂直であるとする.このとき$a=[セソ]$,$\displaystyle b=\frac{[タ]}{[チ]}$である.以下で,$a,\ b$はこの値であるとする.
線分$\mathrm{CK}$上に$\overrightarrow{\mathrm{OL}}$が$\overrightarrow{\mathrm{AC}}$に垂直になるように点$\mathrm{L}$をとるとき
\[ \overrightarrow{\mathrm{OL}}=\left( [ツ],\ [テ],\ \frac{[ト]}{[ナ]} \right) \]
である.そのとき,$\overrightarrow{\mathrm{LK}}$は$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$に垂直である.
平面$\mathrm{OAB}$において,三角形$\mathrm{KAB}$の外接円の周上に点$\mathrm{P}$をとるとき,線分$\mathrm{LP}$の長さの最大値は$\displaystyle \frac{\sqrt{[ニヌ]}}{[ネ]}$である.
同志社大学 私立 同志社大学 2015年 第3問
座標空間内の$xy$平面上に$3$点$\mathrm{A}(-1,\ 5,\ 0)$,$\mathrm{B}(2,\ 2,\ 0)$,$\mathrm{C}(-2,\ 0,\ 0)$がある.また,点$\mathrm{P}(p,\ q,\ r) (r>0)$があり,$\overrightarrow{\mathrm{PA}} \perp \overrightarrow{\mathrm{PB}}$,$\overrightarrow{\mathrm{PB}} \perp \overrightarrow{\mathrm{PC}}$,$\overrightarrow{\mathrm{PC}} \perp \overrightarrow{\mathrm{PA}}$であるとする.次の問いに答えよ.

(1)点$\mathrm{P}$の座標$(p,\ q,\ r)$を求めよ.
(2)四面体$\mathrm{PABC}$の体積を求めよ.
(3)点$\mathrm{P}$から$xy$平面に下ろした垂線の足$\mathrm{H}(p,\ q,\ 0)$に対して,内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{CH}}$,$\overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{AH}}$,$\overrightarrow{\mathrm{CA}} \cdot \overrightarrow{\mathrm{BH}}$をそれぞれ求めよ.
大阪歯科大学 私立 大阪歯科大学 2015年 第3問
$\triangle \mathrm{AOB}$の頂点$\mathrm{A}$から辺$\mathrm{OB}$に下ろした垂線の足を$\mathrm{H}$とする.$\mathrm{OA}=a$,$\mathrm{OB}=b$,$\mathrm{AB}=c$(ただし,$a<b$),$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$として,$\mathrm{OA}$上に点$\mathrm{D}$を,$\mathrm{OB}$上に点$\mathrm{E}$を$\displaystyle \mathrm{OD}=\mathrm{OE}=\frac{a}{4}$となるようにとる.以下の問に答えよ.

(1)$\cos (\angle \mathrm{AOB})$を$a,\ b,\ c$で表せ.
(2)$\overrightarrow{\mathrm{OF}}=\overrightarrow{\mathrm{OD}}+\overrightarrow{\mathrm{OE}}$となるように点$\mathrm{F}$をとる.$\mathrm{OF}$の延長と$\mathrm{AB}$の交点を$\mathrm{P}$とするとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を使って表せ.
(3)$\mathrm{OP}$と$\mathrm{AH}$の交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を使って表せ.
津田塾大学 私立 津田塾大学 2015年 第3問
正方形$\mathrm{ABCD}$を底面とし,頂点を$\mathrm{O}$とする四角錐$\mathrm{OABCD}$を考える.正方形$\mathrm{ABCD}$の$1$辺の長さは$2$で,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{OD}=\sqrt{3}$とする.また,$\mathrm{A}$から$\mathrm{OB}$に下ろした垂線を$\mathrm{AM}$とする.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積,および$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OC}}$の内積を求めよ.
(2)$\angle \mathrm{AMC}=\theta (0<\theta<\pi)$の値を求めよ.
神戸薬科大学 私立 神戸薬科大学 2015年 第5問
一直線上にない$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面$\alpha$があった.$\overrightarrow{\mathrm{AB}}=(1,\ 2,\ 0)$,$\overrightarrow{\mathrm{AC}}=(-1,\ 0,\ 2)$のとき,この$2$つのベクトルに垂直で大きさが$\sqrt{6}$であるベクトル$\overrightarrow{p}$をすべて求めると,$\overrightarrow{p}=[ソ]$である.平面$\alpha$が点$(0,\ 1,\ 2)$を通るとき,原点$\mathrm{O}$から平面$\alpha$におろした垂線$\mathrm{OH}$の長さを求めると,$\mathrm{OH}=[タ]$である.
名城大学 私立 名城大学 2015年 第2問
空間内の$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(2,\ 1,\ 1)$,$\mathrm{B}(1,\ 2,\ -1)$,$\mathrm{C}(-2,\ 4,\ 3)$を頂点とする四面体$\mathrm{OABC}$について,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角$\theta$を求めよ.
(2)点$\mathrm{C}$から三角形$\mathrm{OAB}$に垂線を下ろす.この垂線と三角形$\mathrm{OAB}$との交点を$\mathrm{P}$とするとき,$\overrightarrow{\mathrm{CP}}$を求めよ.
(3)点$\mathrm{Q}$を辺$\mathrm{OC}$上にとる.四面体$\mathrm{OABQ}$の体積が$\displaystyle \frac{9}{4}$となるとき,$\overrightarrow{\mathrm{OQ}}$を求めよ.
西南学院大学 私立 西南学院大学 2015年 第5問
鋭角三角形$\mathrm{ABC}$において,$\mathrm{A}$から辺$\mathrm{BC}$に下した垂線の足を$\mathrm{D}$,$\mathrm{C}$から辺$\mathrm{AB}$に下した垂線の足を$\mathrm{E}$とする.$\mathrm{AD}$と$\mathrm{CE}$の交点を$\mathrm{F}$とし,$\mathrm{BF}$の延長と辺$\mathrm{AC}$の交点を$\mathrm{G}$とする.このとき以下の問に答えよ.

(1)四角形$\mathrm{BDFE}$は円に内接することを証明せよ.
(2)四角形$\mathrm{AEDC}$は円に内接することを証明せよ.
(3)三角形$\mathrm{ABG}$と三角形$\mathrm{ACE}$は相似であることを証明せよ.
(4)四角形$\mathrm{AEFG}$は円に内接することを証明せよ.
スポンサーリンク

「垂線」とは・・・

 まだこのタグの説明は執筆されていません。