タグ「垂線」の検索結果

8ページ目:全330問中71問~80問を表示)
島根大学 国立 島根大学 2015年 第4問
$xy$平面において,点$\mathrm{P}(x,\ y)$と点$(2,\ 0)$の距離が,点$\mathrm{P}$と直線$x=1$の距離の$\sqrt{2}$倍と等しくなるような点$\mathrm{P}$の描く曲線を$C$とする.このとき,次の問いに答えよ.

(1)曲線$C$の方程式を求めよ.
(2)$t$を$0$でない実数とし,曲線$C$と直線$x+y=t$との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$t$を用いて表せ.
(3)$(2)$で求めた点$\mathrm{Q}$から$x$軸に下ろした垂線を$\mathrm{QH}$とする.$t$が$2 \leqq t \leqq 4$の範囲を動くとき,線分$\mathrm{QH}$が通過してできる図形の面積を求めよ.
島根大学 国立 島根大学 2015年 第4問
$xy$平面において,点$\mathrm{P}(x,\ y)$と点$(2,\ 0)$の距離が,点$\mathrm{P}$と直線$x=1$の距離の$\sqrt{2}$倍と等しくなるような点$\mathrm{P}$の描く曲線を$C$とする.このとき,次の問いに答えよ.

(1)曲線$C$の方程式を求めよ.
(2)$t$を$0$でない実数とし,曲線$C$と直線$x+y=t$との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$t$を用いて表せ.
(3)$(2)$で求めた点$\mathrm{Q}$から$x$軸に下ろした垂線を$\mathrm{QH}$とする.$t$が$2 \leqq t \leqq 4$の範囲を動くとき,線分$\mathrm{QH}$が通過してできる図形の面積を求めよ.
宮崎大学 国立 宮崎大学 2015年 第2問
平面上に$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$とする.点$\mathrm{A}$から直線$\mathrm{OB}$に垂線を下ろし,直線$\mathrm{OB}$との交点を$\mathrm{H}$とする.また,点$\mathrm{B}$から直線$\mathrm{OA}$に垂線を下ろし,直線$\mathrm{OA}$との交点を$\mathrm{I}$とする.直線$\mathrm{AH}$と直線$\mathrm{BI}$の交点を$\mathrm{P}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{OH}}$を,$\overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OP}}$を,$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)線分$\mathrm{OP}$の長さを求めよ.
宮崎大学 国立 宮崎大学 2015年 第1問
平面上に$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$とする.点$\mathrm{A}$から直線$\mathrm{OB}$に垂線を下ろし,直線$\mathrm{OB}$との交点を$\mathrm{H}$とする.また,点$\mathrm{B}$から直線$\mathrm{OA}$に垂線を下ろし,直線$\mathrm{OA}$との交点を$\mathrm{I}$とする.直線$\mathrm{AH}$と直線$\mathrm{BI}$の交点を$\mathrm{P}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{OH}}$を,$\overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OP}}$を,$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)線分$\mathrm{OP}$の長さを求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第1問
座標平面上で原点$\mathrm{O}$を中心,半径$1$の円を$S$とする.点$\mathrm{P}$が円$S$上を動くとき,$\mathrm{P}$における$S$の接線に点$\displaystyle \mathrm{A} \left( \frac{1}{2},\ 0 \right)$から下ろした垂線の交点$\mathrm{Q}$のなす軌跡を$C$とする.$x$軸の正の方向に対して$\mathrm{OP}$のなす角を$t$として,$\mathrm{P}$の座標を$(\cos t,\ \sin t)$で表す.このときの$\mathrm{Q}$の座標を$(f(t),\ g(t))$とする.

(1)$f(t),\ g(t)$を求めよ.
(2)$g(t)$の最大値を求めよ.
(3)$C$で囲まれた図形の$y \geqq 0$の部分の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第1問
座標平面上で原点$\mathrm{O}$を中心,半径$1$の円を$S$とする.点$\mathrm{P}$が円$S$上を動くとき,$\mathrm{P}$における$S$の接線に点$\displaystyle \mathrm{A} \left( \frac{1}{2},\ 0 \right)$から下ろした垂線の交点$\mathrm{Q}$のなす軌跡を$C$とする.$x$軸の正の方向に対して$\mathrm{OP}$のなす角を$t$として,$\mathrm{P}$の座標を$(\cos t,\ \sin t)$で表す.このときの$\mathrm{Q}$の座標を$(f(t),\ g(t))$とする.

(1)$f(t),\ g(t)$を求めよ.
(2)$g(t)$の最大値を求めよ.
(3)$C$で囲まれた図形の$y \geqq 0$の部分の面積を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2015年 第3問
座標平面上で次のように媒介変数表示される曲線$C$を考える.
\[ \left\{ \begin{array}{l}
x=|\cos t| \cos^3 t \\
y=|\sin t| \sin^3 t \phantom{\frac{\mkakko{}}{2}}
\end{array} \right. \hspace{-8mm}(0 \leqq t \leqq 2\pi) \]
このとき以下の各問いに答えよ.

(1)次の条件$(*)$を満たす第$1$象限内の定点$\mathrm{F}$の座標を求めよ.
$(*)$ 第$1$象限内で$C$上にあるすべての点$\mathrm{P}$について,$\mathrm{P}$から直線$x+y=0$に下ろした垂線を$\mathrm{PH}$とするとき,つねに$\mathrm{PF}=\mathrm{PH}$となる.
(2)点$\mathrm{P}$が$C$全体を動くとき,$\mathrm{P}$と$(1)$の定点$\mathrm{F}$を結ぶ線分$\mathrm{PF}$が通過する領域を図示し,その面積を求めよ.
(3)$(2)$の領域を$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2015年 第1問
座標平面上で次のように媒介変数表示される曲線$C$を考える.
\[ \left\{ \begin{array}{l}
x=|\cos t| \cos^3 t \\
y=|\sin t| \sin^3 t \phantom{\frac{\mkakko{}}{2}}
\end{array} \right. \hspace{-8mm}(0 \leqq t \leqq 2\pi) \]
このとき以下の各問いに答えよ.

(1)次の条件$(*)$を満たす第$1$象限内の定点$\mathrm{F}$の座標を求めよ.
$(*)$ 第$1$象限内で$C$上にあるすべての点$\mathrm{P}$について,$\mathrm{P}$から直線$x+y=0$に下ろした垂線を$\mathrm{PH}$とするとき,つねに$\mathrm{PF}=\mathrm{PH}$となる.
(2)点$\mathrm{P}$が$C$全体を動くとき,$\mathrm{P}$と$(1)$の定点$\mathrm{F}$を結ぶ線分$\mathrm{PF}$が通過する領域を図示し,その面積を求めよ.
(3)$(2)$の領域を$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
座標空間内の原点$\mathrm{O}$,$z$座標が正である点$\mathrm{P}_k (k=1,\ 2,\ \cdots,\ 7)$を頂点とする立方体$\mathrm{OP}_1 \mathrm{P}_2 \mathrm{P}_3-\mathrm{P_4}\mathrm{P_5}\mathrm{P_6}\mathrm{P_7}$を考える.点$\mathrm{P}_1$の座標は$(2,\ 5,\ 4)$であり,点$\mathrm{P}_3$は$zx$平面上にあるとする.このとき,点$\mathrm{P}_3$の座標は$[ソ]$,点$\mathrm{P}_4$の座標は$[タ]$,点$\mathrm{P}_6$の座標は$[チ]$である.点$\mathrm{P}_k (k=1,\ 2,\ \cdots,\ 7)$を$xy$平面に下ろした垂線を$\mathrm{P}_k \mathrm{Q}_k$とするとき,四角形$\mathrm{OQ}_1 \mathrm{Q}_2 \mathrm{Q}_3$の面積は$[ツ]$,六角形$\mathrm{Q}_1 \mathrm{Q}_2 \mathrm{Q}_3 \mathrm{Q}_7 \mathrm{Q}_4 \mathrm{Q}_5$の面積は$[テ]$である.また,立方体と$z$軸との交わりは線分となり,その線分の長さは$[ト]$となる.
(図は省略)
自治医科大学 私立 自治医科大学 2015年 第10問
楕円$\displaystyle C:\frac{x^2}{9}+\frac{y^2}{4}=1$と直線$L:x-2y+10=0$について考える.楕円$C$上の点$\mathrm{P}$から直線$L$に下ろした垂線と直線$L$の交点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$の最大値を$M$,最小値を$m$とするとき,$\displaystyle \frac{M}{m}$の値を求めよ.
スポンサーリンク

「垂線」とは・・・

 まだこのタグの説明は執筆されていません。