タグ「垂線」の検索結果

4ページ目:全330問中31問~40問を表示)
日本女子大学 私立 日本女子大学 2016年 第1問
曲線$y=\sin x$上の点$\mathrm{P}$の$x$座標を$\theta$とする.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.この曲線上の点$\mathrm{P}$における法線が$x$軸と交わる点を$\mathrm{Q}$とおき,点$\mathrm{P}$から$x$軸に下ろした垂線を$\mathrm{PR}$とする.このとき,$\triangle \mathrm{PQR}$の面積の最大値を求めよ.
成城大学 私立 成城大学 2016年 第1問
座標空間の原点を$\mathrm{O}$とし,点$\mathrm{P}(x,\ y,\ z)$について,$\overrightarrow{\mathrm{OP}}$の大きさを$d$,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{e_3}=(0,\ 0,\ 1)$のなす角を$\alpha$とする.そして,点$\mathrm{P}$から$xy$平面に下ろした垂線を$\mathrm{PQ}$とし,$\overrightarrow{\mathrm{OQ}}$と$\overrightarrow{e_1}=(1,\ 0,\ 0)$のなす角を$\beta$とする.ただし,$d \geqq 0$,$0 \leqq \alpha \leqq \pi$,$0 \leqq \beta \leqq 2\pi$であるとし,$\mathrm{P}$が$z$軸上にあるとき$\beta=0$であるものとする.

(1)$x,\ y,\ z$を$d,\ \alpha,\ \beta$を用いて表せ.
(2)$d=3$を固定し,$\alpha$が$0$から$\pi$,$\beta$が$0$から$2\pi$まで変化したときに点$\mathrm{P}$が描く図形は何か.また,その面積を求めよ.
(3)$\displaystyle \alpha=\frac{\pi}{6}$を固定し,$d$が$0$から$4$,$\beta$が$0$から$2\pi$まで変化したときに点$\mathrm{P}$が描く図形は何か.また,その面積を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$l \geqq 1$を定数とし,座標空間の点$\mathrm{A}$は平面$z=-1$上を,点$\mathrm{B}$は平面$z=1$上を,$\mathrm{OA}=\mathrm{OB}=l$をみたしつつ動くとする.ただし$\mathrm{O}$は座標空間の原点である.

(1)$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$となるように点$\mathrm{A}$,$\mathrm{B}$を選ぶことができるためには$l \geqq [あ]$であることが必要十分である.また,点$\mathrm{A}$,$\mathrm{B}$から$xy$平面へ垂線を下ろし,それぞれと$xy$平面との交点を$\mathrm{A}^\prime,\ \mathrm{B}^\prime$とするとき,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$かつ$\displaystyle \cos \angle \mathrm{A}^\prime \mathrm{OB}^\prime=\frac{2}{3}$となるように点$\mathrm{A}$,$\mathrm{B}$を選ぶことができるのは$l=[い]$のときである.
(2)$l=[い]$のとき,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標を
\[ \mathrm{A}(0,[う],-1),\quad \mathrm{B}([え],[お],1),\quad \mathrm{C}([か],[き],[く]) \]
とすると$\mathrm{OABC}$は正四面体をなす.ただし$[う],\ [え],\ [く]$はいずれも正とする.
また,正四面体$\mathrm{OABC}$を平面$y+3z=t$で切ったときの切り口は$[け]<t<[こ]$のとき四角形となる.その四角形は上底と下底の和が$[さ]$,高さが$[し]$の台形であり,その面積は$t=[す]$のとき最大値$[せ]$をとる.
津田塾大学 私立 津田塾大学 2016年 第3問
$a$を正の定数とし,放物線$C:y=ax^2$上の点$\mathrm{P}(t,\ at^2)$における接線を$\ell_1$とする.ただし,$t>0$である.

(1)$\ell_1$と$x$軸との交点を通り$\ell_1$と直交する直線を$\ell_2$とする.$\ell_2$は$\mathrm{P}$によらない定点を通ることを示せ.
(2)$x$軸に関して$\ell_1$と対称な直線を$\ell_3$とする.$\ell_3$と$C$の$2$つの交点のうち$x$座標が大きい方を$\mathrm{Q}$,$\mathrm{Q}$から$x$軸に下ろした垂線の足を$\mathrm{R}$とするとき,$C$と直線$\mathrm{QR}$と$x$軸とで囲まれた図形の面積を求めよ.
津田塾大学 私立 津田塾大学 2016年 第3問
空間内の異なる$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$は同一平面上にないとし,$\mathrm{OA} \perp \mathrm{AB}$,$\mathrm{OA} \perp \mathrm{AC}$,$\mathrm{OB} \perp \mathrm{BC}$とする.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とする.

(1)$|\overrightarrow{a}|^2=\overrightarrow{a} \cdot \overrightarrow{b}$,$|\overrightarrow{a}|^2=\overrightarrow{a} \cdot \overrightarrow{c}$,$|\overrightarrow{b}|^2=\overrightarrow{b} \cdot \overrightarrow{c}$であることを示せ.
(2)$\mathrm{A}$から直線$\mathrm{OB}$へ下ろした垂線を$\mathrm{AB}^\prime$,$\mathrm{A}$から直線$\mathrm{OC}$へ下ろした垂線を$\mathrm{AC}^\prime$とし,$\overrightarrow{\mathrm{OB}^\prime}=k \overrightarrow{b}$,$\overrightarrow{\mathrm{OC}^\prime}=l \overrightarrow{c}$とする.$|\overrightarrow{a}|^2=k|\overrightarrow{b}|^2=l|\overrightarrow{c}|^2$であることを示せ.
(3)$\angle \mathrm{B}^\prime \mathrm{AC}^\prime=\theta$とするとき,$\cos \theta$を$k,\ l$を用いて表せ.
青山学院大学 私立 青山学院大学 2016年 第5問
関数$y=xe^{-x} (x \geqq 0)$のグラフにおいて,$y$座標の値が最大となる点を$\mathrm{A}$,変曲点を$\mathrm{B}$とし,点$\mathrm{B}$から$x$軸に下ろした垂線と$x$軸との交点を$\mathrm{C}$とする.

(1)点$\mathrm{A}$,$\mathrm{B}$の座標を求め,関数$y=xe^{-x} (x \geqq 0)$のグラフをかけ.ただし,$\displaystyle \lim_{x \to \infty} xe^{-x}=0$であることを用いてよい.
(2)線分$\mathrm{OA}$,$\mathrm{OB}$および関数$y=xe^{-x}$のグラフの点$\mathrm{A}$から点$\mathrm{B}$までの部分で囲まれた図形の面積$S_1$を求めよ.ただし,$\mathrm{O}$は原点である.
(3)$S_1$と三角形$\mathrm{OBC}$の面積$S_2$の大小を比較せよ.
同志社大学 私立 同志社大学 2016年 第3問
座標空間内の$4$点$\mathrm{A}(1,\ 2,\ 3)$,$\mathrm{B}(2,\ 1,\ 5)$,$\mathrm{C}(2,\ 3,\ -1)$,$\mathrm{P}(2 \cos \theta,\ \sin \theta,\ 0)$を考える.ただし,$0 \leqq \theta<2\pi$とする.次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$の両方に垂直で,大きさが$1$のベクトルをすべて求めよ.
(3)点$\mathrm{P}$から,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面$\alpha$に,下ろした垂線の足$\mathrm{H}$の座標を$\theta$を用いて表せ.
(4)四面体$\mathrm{PABC}$の体積$V$を$\theta$を用いて表せ.
(5)四面体$\mathrm{PABC}$の体積$V$の最大値と最小値を求めよ.
北里大学 私立 北里大学 2016年 第1問
次の$[ ]$にあてはまる答えを記せ.

(1)$a$と$\theta$を実数とし,$2$次方程式$x^2-\sqrt{7}ax+3a^3=0$の$2$つの解を$\sin \theta$,$\cos \theta$とする.このとき,$a$の値は$[ア]$または$[イ]$である.ただし,$[ア]<[イ]$とする.さらに,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$であれば,$\sin \theta=[ウ]$である.
(2)$x,\ y,\ z$を$0$以上の整数とする.このとき

(i) $x+y+z=9$を満たす$x,\ y,\ z$の組の総数は$[エ]$である.
(ii) $x+y+z \leqq 9$を満たす$x,\ y,\ z$の組の総数は$[オ]$である.
(iii) $x+y+z \leqq 9$を満たす$x,\ y,\ z$の組のうち,$x,\ y,\ z$がすべて相異なるものの総数は$[カ]$である.

(3)$a$を$0 \leqq a \leqq 1$を満たす定数とする.直線$y=1-x$と$x$軸,$y$軸で囲まれた図形を直線$y=a$の周りに$1$回転してできる回転体の体積を$V(a)$とする.このとき$V(a)$は,$\displaystyle 0 \leqq a<\frac{1}{2}$ならば$[キ]$,$\displaystyle \frac{1}{2} \leqq a \leqq 1$ならば$[ク]$と$a$を用いて表される.また,$V(a)$のとり得る値の範囲は$[ケ]$である.
(4)$1$辺の長さが$2$の正四面体$\mathrm{OABC}$がある.辺$\mathrm{OA}$の中点を$\mathrm{M}$,辺$\mathrm{OB}$の中点を$\mathrm{N}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.
このとき,$\cos \angle \mathrm{MCN}$の値は$[コ]$である.また,頂点$\mathrm{O}$から平面$\mathrm{MNC}$に下ろした垂線と平面$\mathrm{MNC}$の交点を$\mathrm{H}$とするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表すと,$\overrightarrow{\mathrm{OH}}=[サ] \overrightarrow{a}+[シ] \overrightarrow{b}-[ス] \overrightarrow{c}$である.さらに,直線$\mathrm{OH}$と平面$\mathrm{ABC}$の交点を$\mathrm{F}$とするとき,$\displaystyle \frac{\mathrm{OH}}{\mathrm{HF}}$の値は$[セ]$である.
明治大学 私立 明治大学 2016年 第2問
次の各問の$[ ]$に当てはまる数を入れよ.

三角形$\mathrm{ABC}$の内点$\mathrm{O}$をとる.$\mathrm{AO}$,$\mathrm{BO}$,$\mathrm{CO}$をそれぞれ辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$までのばしたときの各交点を$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.ここで,三角形$\triangle \mathrm{ABO}$,$\triangle \mathrm{ACO}$,$\triangle \mathrm{BCO}$の面積が,それぞれ$\triangle \mathrm{ABO}=c$,$\triangle \mathrm{ACO}=b$,$\triangle \mathrm{BCO}=a$とする.

(1)$\mathrm{B}$と$\mathrm{C}$を通る直線を$\ell$とする.$\mathrm{A}$から$\ell$への垂線の長さを$6$,$\mathrm{O}$から$\ell$への垂線の長さを$3$とするとき,$\displaystyle \frac{\mathrm{AO}}{\mathrm{DO}}=[ア]$,$\displaystyle \frac{\triangle \mathrm{ABO}}{\triangle \mathrm{BDO}}=[イ]$である.

(2)上の$(1)$とは異なる三角形$\mathrm{ABC}$について,$a=8$,$b=10$,$c=6$とする.
$\displaystyle \frac{\triangle \mathrm{CDO}}{\triangle \mathrm{BDO}}=\frac{[ウ]}{[エ]}$だから,$\triangle \mathrm{BDO}$の面積は,$[オ]$であり,$\triangle \mathrm{CDO}$の面積は,$[カ]$である.
(3)同様にして,$\displaystyle \triangle \mathrm{CEO}=\frac{[キ][ク]}{[ケ]}$,$\displaystyle \triangle \mathrm{AEO}=\frac{[コ][サ]}{[シ]}$,$\displaystyle \triangle \mathrm{AFO}=\frac{[ス][セ]}{[ソ]}$,$\displaystyle \triangle \mathrm{BFO}=\frac{[タ]}{[チ]}$となり,特に


$\displaystyle \frac{\triangle \mathrm{AFO}}{\triangle \mathrm{BFO}} \cdot \frac{\triangle \mathrm{BDO}}{\triangle \mathrm{CDO}} \cdot \frac{\triangle \mathrm{CEO}}{\triangle \mathrm{AEO}}=[ツ]$

$\displaystyle \frac{\mathrm{AO}}{\mathrm{DO}} \cdot \frac{\mathrm{BO}}{\mathrm{EO}} \cdot \frac{\mathrm{CO}}{\mathrm{FO}}=\frac{[テ][ト]}{[ナ]}$


である.
昭和薬科大学 私立 昭和薬科大学 2016年 第2問
$3$点$\mathrm{A}(6,\ 0,\ 0)$,$\mathrm{B}(2,\ 1,\ 1)$,$\mathrm{C}(0,\ 4,\ -1)$を通る平面$\alpha$に対して,以下の問に答えよ.

(1)平面$\alpha$の方程式を$ax+by+cz=6$としたとき,$a=[ナ]$,$b=[ニ]$,$c=[ヌ]$である.
(2)原点$\mathrm{O}$から平面$\alpha$に下ろした垂線の足を$\mathrm{H}$とするとき,$\mathrm{H}$の座標は
\[ \left( \frac{[ネ]}{[ノ]},\ \frac{[ハ]}{[ヒ]},\ \frac{[フ]}{[ヘ]} \right) \]
である.
(3)平面$\alpha$上に点$\mathrm{A}$を中心とした半径$\sqrt{2}$の円$\beta$を考える.点$\mathrm{P}$が円$\beta$上を動くとき,$\mathrm{OP}$の最小値は$\sqrt{[ホマ]}$である.
スポンサーリンク

「垂線」とは・・・

 まだこのタグの説明は執筆されていません。