タグ「垂線」の検索結果

29ページ目:全330問中281問~290問を表示)
名城大学 私立 名城大学 2011年 第1問
次の$[ ]$に適切な答えを入れよ.

(1)$x^2-x-1=0$の解を$\alpha,\ \beta$とするとき,$\alpha^2+\beta^2=[ア]$,$\alpha^3+\beta^3=[イ]$である.
(2)$\triangle \mathrm{ABC}$は$\angle \mathrm{ACB}=90^\circ$の直角三角形である.点$\mathrm{C}$から辺$\mathrm{AB}$に下ろした垂線を$\mathrm{CD}$とする.$\mathrm{BD}:\mathrm{DA}=2:3$のとき,$\sin \angle \mathrm{CAB}=[ウ]$,$\sin \angle \mathrm{ABC}=[エ]$である.
(3)$1$から$100$までの自然数の番号をつけた$100$枚のカードから$1$枚を取り出すとき,そのカードの番号が$4$の倍数または$5$の倍数である確率は$[オ]$,$3$の倍数または$7$の倍数である確率は$[カ]$である.
(4)$2^n$が$4$桁の数となるような自然数$n$は$[キ]$個であり,$12$桁の数となるような自然数$n$は$[ク]$個である.ただし,$\log_{10}2=0.3010$とする.
立教大学 私立 立教大学 2011年 第3問
座標平面上の放物線$\displaystyle y=\frac{1}{4}x^2$について,その頂点を$\mathrm{O}$とし,この放物線上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$をとる.また$\mathrm{A}$,$\mathrm{B}$は頂点$\mathrm{O}$と異なる点で,$\angle \mathrm{AOB}$が直角になるものとする.点$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$a,\ b$とし,$a+b=t$として,次の問に答えよ.

(1)$\angle \mathrm{AOB}$が直角となる条件を$a,\ b$を用いて表せ.
(2)$t$を用いて直線$\mathrm{AB}$の方程式を求めよ.
(3)頂点$\mathrm{O}$から直線$\mathrm{AB}$におろした垂線が,直線$\mathrm{AB}$と交わる点を$\mathrm{H}$とするとき,$t$を用いて直線$\mathrm{OH}$の方程式を求めよ.
(4)$\mathrm{A}$,$\mathrm{B}$が放物線上を動くとき,$t$を用いて点$\mathrm{H}$の座標を求めよ.
中部大学 私立 中部大学 2011年 第1問
次の$[ ]$にあてはまる数字または符号を記入せよ.

(1)$\displaystyle -2<\log_8 x<\frac{5}{3}$を満たす$x$は$\displaystyle \frac{[ ]}{[ ]}<x<[ ]$である.
(2)$x^3+ax^2+x+b=0$が$1$と$-2$を解にもつとき,もう$1$つの解は$[ ]$である.
(3)$7$個の数字$1,\ 2,\ 2,\ 3,\ 3,\ 4,\ 4$を$1$列に並べる.このとき,偶数番目がすべて奇数になるような並べ方は$[ ]$通りある.
(4)$2$点$(2,\ 0,\ 1)$,$(1,\ 1,\ 2)$を通る直線がある.原点$\mathrm{O}$からこの直線に下ろした垂線の足を$\mathrm{A}$とする.点$\mathrm{A}$の座標は$\displaystyle \left( \frac{[ ]}{[ ]},\ \frac{[ ]}{[ ]},\ \frac{[ ]}{[ ]} \right)$であり,原点から点$\mathrm{A}$までの距離は$\displaystyle \frac{\sqrt{[ ]}}{[ ]}$である.
東北工業大学 私立 東北工業大学 2011年 第2問
三角形$\mathrm{ABC}$があり,各辺の長さは$\mathrm{BC}=2 \sqrt{13}$,$\mathrm{CA}=2 \sqrt{10}$,$\mathrm{AB}=2 \sqrt{5}$である.このとき,

(1)$\displaystyle \cos A=\frac{\sqrt{[ ]}}{10}$である.
(2)三角形$\mathrm{ABC}$の面積は$[ ]$である.
(3)頂点$\mathrm{A}$から辺$\mathrm{BC}$に垂線を引き,この垂線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.$\angle \mathrm{BAD}=\theta$とすれば,$\displaystyle \sin \theta=\frac{[ ] \sqrt{65}}{65}$である.
(4)辺$\mathrm{BC}$の中点を$\mathrm{E}$とすれば,線分$\mathrm{AE}$の長さは$\sqrt{[ ]}$である.
(5)$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{F}$とする.このとき,線分$\mathrm{CF}$の長さは$4 \sqrt{13}-2 \sqrt{[ ]}$である.
獨協大学 私立 獨協大学 2011年 第2問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}=3$,$\mathrm{AC}=4$,$\angle \mathrm{ACB}={90}^\circ$とし,辺$\mathrm{AB}$上に点$\mathrm{D}$をとり$\mathrm{AD}=x$とする.点$\mathrm{D}$から$\mathrm{BC}$,$\mathrm{AC}$へ,それぞれ垂線$\mathrm{DE}$,$\mathrm{DF}$を下ろす.

(1)長方形$\mathrm{DECF}$の面積を変数$x$を使って表せ.
(2)長方形$\mathrm{DECF}$の面積が最大となるときの面積と$x$の値を求めよ.
早稲田大学 私立 早稲田大学 2011年 第3問
$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B} \displaystyle \biggl( 0,\ \frac{1}{2},\ 0 \biggr)$,$\mathrm{C} \displaystyle \biggl( 0,\ 0,\ \frac{1}{3} \biggr)$の定める平面を$\alpha$とする.点$\mathrm{P}$を$\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}$を満たすようにとり,点$\mathrm{P}$から平面$\alpha$に垂線$\mathrm{PQ}$を下ろす.このとき,
\[ \overrightarrow{\mathrm{PQ}}=\frac{[ケ] \overrightarrow{\mathrm{OA}}+[コ] \overrightarrow{\mathrm{OB}}+[サ] \overrightarrow{\mathrm{OC}}}{[シ]} \]
となる.ただし,$[シ]$はできるだけ小さな自然数で答えること.
高崎経済大学 公立 高崎経済大学 2011年 第3問
放物線$y=-(x-2)^2+1$上に点Pがある.点Pの$x$座標を$a$とし,$\displaystyle \frac{1}{2} \leqq a \leqq \frac{3}{2}$とする.以下の問に答えよ.

(1)放物線上の点Pにおける接線の方程式を求めよ.
(2)点Pから$y$軸に下ろした垂線の足を点Qとする.また,(1)で求めた接線と$y$軸の交点を点Rとする.$\triangle$PQRの面積$S$を$a$で表せ.点Pから$y$軸に下ろした垂線と$y$軸との交点のことである.
(3)(2)で求めた面積$S$が最大になるときの$a$の値とその面積を求めよ.
滋賀県立大学 公立 滋賀県立大学 2011年 第3問
$xy$平面上の原点O,定点A$(a,\ 0) \ (a>0)$,定点B$(0,\ b) \ (b>0)$を頂点とする直角三角形OABがある.直角三角形OAB内の点M$(p,\ q)$から辺OA,OB,ABに引いた垂線と各辺との交点をそれぞれE,F,Gとする.

(1)$L=\text{ME} \cdot \text{MF} \cdot \text{MG}$とおいたとき,$L$を$a,\ b,\ p,\ q$で表せ.
(2)$L$において,$q$を固定し,$p$を変数としたとき,$L$の最大値$L_1$を$a,\ b,\ q$で表せ.
(3)$L_1$において,$q$を変数としたとき,$L_1$の最大値$L_2$を$a,\ b$で表せ.
兵庫県立大学 公立 兵庫県立大学 2011年 第1問
座標空間内に3点A$(1,\ 0,\ 0)$,B$(0,\ \sqrt{2},\ 0)$,C$(0,\ 0,\ 1)$がある.

(1)$\cos \angle \text{ACB}$の値を求めよ.
(2)原点O$(0,\ 0,\ 0)$から三角形ABCに下ろした垂線の足をHとするとき,$\cos \angle \text{COH}$の値を求めよ.
兵庫県立大学 公立 兵庫県立大学 2011年 第2問
$xy$平面において$y=x^2$で表される放物線を$C$とする.$C$上の点$\mathrm{T}(t,\ t^2)$を通る直線で,点$\mathrm{T}$における$C$の接線と直交するものを,点$\mathrm{T}$における$C$への垂線と呼ぶことにする.以下の問に答えなさい.

(1)点$\mathrm{T}(t,\ t^2)$における$C$への垂線の方程式を求めなさい.
(2)点$\displaystyle \mathrm{A} \left( -12,\ \frac{15}{2} \right)$からひいた$C$への垂線の方程式をすべて求めなさい.
(3)$xy$平面上の点$\mathrm{B}(p,\ q)$から$C$への垂線が$3$本ひけるとき,$p,\ q$が満たすべき必要十分条件を求めなさい.
スポンサーリンク

「垂線」とは・・・

 まだこのタグの説明は執筆されていません。