タグ「垂線」の検索結果

26ページ目:全330問中251問~260問を表示)
福井大学 国立 福井大学 2011年 第2問
座標平面上の原点Oを中心とする半径1の円周上に,点Pがある.ただし,Pは第1象限の点である.点Pから$x$軸に下ろした垂線と$x$軸との交点をQ,線分PQを$2:1$に内分する点をRとする.$\theta=\angle \text{QOP}$のときの$\tan \angle \text{QOR}$と$\tan \angle \text{ROP}$の値をそれぞれ$f(\theta),\ g(\theta)$とおく.以下の問いに答えよ.

(1)$f(\theta)$と$g(\theta)$を$\theta$を用いて表せ.
(2)$g(\theta)$の$\displaystyle 0<\theta<\frac{\pi}{2}$における最大値と,そのときの$\theta$の値を求めよ.
滋賀大学 国立 滋賀大学 2011年 第3問
座標平面上の点$(1,\ 0)$をAとする.原点O$(0,\ 0)$を中心とし半径が1の円周上の2点P,Qは,$\displaystyle \angle \text{AOP}=\theta,\ \angle \text{AOQ}=\theta+\frac{\pi}{3},\ 0<\theta<\frac{2\pi}{3}$を満たす.また,点Pから$x$軸に引いた垂線と$x$軸の交点をBとし,点Cを四角形BPQCが平行四辺形になるように定める.ただし,点P,Qの$y$座標は正とする.このとき,次の問いに答えよ.

(1)点Cの座標を$\theta$を用いて表せ.
(2)四角形BPQCの面積の最大値を求めよ.また,そのときの$\theta$の値を求めよ.
香川大学 国立 香川大学 2011年 第1問
$\triangle$ABCの外接円の半径は1である.この外接円の中心Oから3つの辺BC,CA,ABへ下ろした垂線をそれぞれOL,OM,ONとし,
\[ \sqrt{3}\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{OM}}+(2+\sqrt{3})\overrightarrow{\mathrm{ON}}=\overrightarrow{\mathrm{0}} \]
が成立しているとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,次の問に答えよ.

(1)$\overrightarrow{c}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(3)$\angle \text{AOB}$および$\angle \text{ACB}$を求めよ.
(4)$\triangle$ABCの面積を求めよ.
香川大学 国立 香川大学 2011年 第1問
$\triangle$ABCの外接円の半径は1である.この外接円の中心Oから3つの辺BC,CA,ABへ下ろした垂線をそれぞれOL,OM,ONとし,
\[ \sqrt{3}\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{OM}}+(2+\sqrt{3})\overrightarrow{\mathrm{ON}}=\overrightarrow{\mathrm{0}} \]
が成立しているとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,次の問に答えよ.

(1)$\overrightarrow{c}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(3)$\angle \text{AOB}$および$\angle \text{ACB}$を求めよ.
(4)$\triangle$ABCの面積を求めよ.
香川大学 国立 香川大学 2011年 第1問
$\triangle$ABCの外接円の半径は1である.この外接円の中心Oから3つの辺BC,CA,ABへ下ろした垂線をそれぞれOL,OM,ONとし,
\[ \sqrt{3}\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{OM}}+(2+\sqrt{3})\overrightarrow{\mathrm{ON}}=\overrightarrow{\mathrm{0}} \]
が成立しているとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,次の問に答えよ.

(1)$\overrightarrow{c}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(3)$\angle \text{AOB}$および$\angle \text{ACB}$を求めよ.
(4)$\triangle$ABCの面積を求めよ.
三重大学 国立 三重大学 2011年 第2問
四面体OABCにおいて$\text{OA}=\text{OC}=\sqrt{2},\ \text{OB}=\sqrt{5},\ \text{AB}=3$であり,$\displaystyle \angle \text{AOC}=\angle \text{BOC}=\frac{\pi}{2}$であるとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{a} \cdot \overrightarrow{c},\ \overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(2)線分ABを$1:2$に内分する点をDとし,点Oから直線CDに引いた垂線と直線CDの交点をHとするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また$|\overrightarrow{\mathrm{OH}}|$を求めよ.
三重大学 国立 三重大学 2011年 第3問
四面体OABCにおいて$\text{OA}=\text{OC}=\sqrt{2},\ \text{OB}=\sqrt{5},\ \text{AB}=3$であり,$\displaystyle \angle \text{AOC}=\angle \text{BOC}=\frac{\pi}{2}$であるとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{a} \cdot \overrightarrow{c},\ \overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(2)線分ABを$1:2$に内分する点をDとし,点Oから直線CDに引いた垂線と直線CDの交点をHとするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また$|\overrightarrow{\mathrm{OH}}|$を求めよ.
三重大学 国立 三重大学 2011年 第3問
四面体OABCにおいて$\text{OA}=\text{OC}=\sqrt{2},\ \text{OB}=\sqrt{5},\ \text{AB}=3$であり,$\displaystyle \angle \text{AOC}=\angle \text{BOC}=\frac{\pi}{2}$であるとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{a} \cdot \overrightarrow{c},\ \overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(2)線分ABを$1:2$に内分する点をDとし,点Oから直線CDに引いた垂線と直線CDの交点をHとするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また$|\overrightarrow{\mathrm{OH}}|$を求めよ.
愛知教育大学 国立 愛知教育大学 2011年 第4問
原点から曲線$C:y=e^{2x}$へひいた接線と$C$との接点をP$(a,\ b)$とするとき,以下の問いに答えよ.

(1)点Pの座標$(a,\ b)$を求めよ.
(2)点$(0,\ 1)$から点Pまで曲線$C$に沿って点Qが動く.$C$の点Qにおける接線を$\ell$,点Pから$x$軸に下ろした垂線と$\ell$との交点をHとし,Qの$x$座標を$t$とする.$0 \leqq x \leqq a$の範囲で曲線$C$より下,かつ,直線$\ell$より上の部分の面積を$S(t)$とするとき,$0<t<a$における$S(t)$の最小値と,そのときの$t$の値を求めよ.
佐賀大学 国立 佐賀大学 2011年 第2問
$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$の中点を$\mathrm{D}$とする.点$\mathrm{B}$,$\mathrm{C}$から対辺またはその延長線上に垂線$\mathrm{BE}$,$\mathrm{CF}$を下ろす.$\triangle \mathrm{DEF}$が正三角形となるとき,$\angle \mathrm{A}$の大きさを求めよ.
スポンサーリンク

「垂線」とは・・・

 まだこのタグの説明は執筆されていません。