タグ「垂線」の検索結果

24ページ目:全330問中231問~240問を表示)
北海学園大学 私立 北海学園大学 2012年 第3問
$\mathrm{AB}=k$,$\displaystyle \mathrm{CA}=\frac{5}{3}k$,$\displaystyle \cos A=\frac{1}{3}$である三角形$\mathrm{ABC}$において,頂点$\mathrm{A}$から直線$\mathrm{BC}$に下ろした垂線と直線$\mathrm{BC}$との交点を$\mathrm{H}$とする.ただし,$k$は定数で,$k>0$とする.

(1)辺$\mathrm{BC}$の長さを$k$を用いて表せ.
(2)線分$\mathrm{BH}$の長さを$k$を用いて表せ.
(3)線分$\mathrm{AH}$上に$\angle \mathrm{BDC}=90^\circ$となる点$\mathrm{D}$をとるとき,線分$\mathrm{BD}$の長さを$k$を用いて表せ.また,$\cos \angle \mathrm{BDA}$の値を求めよ.
昭和薬科大学 私立 昭和薬科大学 2012年 第1問
次の問いに答えよ.

(1)$\log_{10}3=a$,$\log_{10}5=b$のとき,$\log_{\frac{3}{2}}48$を$a,\ b$で表すと$\displaystyle \frac{a-[ ]b+[ ]}{a+[ ]b-[ ]}$である.
(2)関数$\displaystyle y=12 \sin \theta+5 \cos \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$について,$y$の取り得る値の範囲は$[ ] \leqq y \leqq [ ]$である.
(3)ある$2$次関数のグラフを$x$軸方向に$4$,$y$軸方向に$-6$平行移動すると,$y=-x^2+6x+6$と一致する.もとの$2$次関数は$y=-x^2-[ ]x+[ ]$である.
(4)赤玉が$5$個,青玉が$4$個入っている袋から$3$個を取り出すとき,少なくとも$1$個が青玉である確率は$\displaystyle \frac{[ ]}{[ ]}$である.
(5)$\triangle \mathrm{ABC}$において,それぞれの辺の長さを$a=3$,$b=\sqrt{7}$,$c=2$とするとき,$\mathrm{A}$から辺$\mathrm{BC}$に下ろした垂線$\mathrm{AH}$の長さは$\sqrt{[ ]}$である.
(6)$3$点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$が定める平面に原点$\mathrm{O}$から垂線$\mathrm{OH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$で表すと
\[ \overrightarrow{\mathrm{OH}}=\frac{[ ]}{[ ]} \overrightarrow{\mathrm{OA}}+\frac{[ ]}{[ ]} \overrightarrow{\mathrm{OB}}+\frac{[ ]}{[ ]} \overrightarrow{\mathrm{OC}} \]
である.
関西学院大学 私立 関西学院大学 2012年 第3問
座標空間の原点を$\mathrm{O}$とし,$3$点$\mathrm{A}(1,\ 0,\ 1)$,$\mathrm{B}(2,\ -1,\ 0)$,$\mathrm{C}(1,\ 1,\ 2)$を通る平面を$\alpha$とするとき,次の問いに答えよ.

(1)$yz$平面上の点$\mathrm{P}(0,\ a,\ b)$が$\overrightarrow{\mathrm{AP}}=t \overrightarrow{\mathrm{AB}}$を満たすとき,$t$の値および$a,\ b$の値を求めよ.
(2)平面$\alpha$上に点$\mathrm{Q}(2,\ 0,\ c)$がある.$\overrightarrow{\mathrm{AQ}}=s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$を満たす$s,\ t$の値および$c$の値を求めよ.
(3)原点$\mathrm{O}$から平面$\alpha$に垂線$\mathrm{OH}$を下ろすとき,点$\mathrm{H}$の座標を求めよ.また,線分$\mathrm{OH}$の長さを求めよ.
大阪学院大学 私立 大阪学院大学 2012年 第2問
$\mathrm{O}$を原点とし,$y>0$であるような点$\mathrm{A}(x,\ y)$から$x$軸に下ろした垂線の足を$\mathrm{B}(x,\ 0)$とする.いま,点$\mathrm{A}$を,$\mathrm{OA}+\mathrm{AB}=c$($c$は正定数)という条件を満たすように選びたい.次の問いに答えなさい.

(1)点$\mathrm{A}$の座標$(x,\ y)$の満たすべき条件を$y=f(x)$の形の式で表しなさい.また,そのとき点$\mathrm{A}$の$x$座標のとりうる範囲も示しなさい.
(2)$c=2$とするとき,点$\mathrm{A}$の条件を満たす座標$(x,\ y)$のうち,$-1 \leqq x \leqq 1$の範囲での$x+y$の最大値と最小値を求めなさい.
吉備国際大学 私立 吉備国際大学 2012年 第2問
$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,直線$\mathrm{AG}$と$\mathrm{BC}$の交点を$\mathrm{M}$とする.また$\mathrm{A}$,$\mathrm{G}$から直線$\mathrm{BC}$に垂線をおろしその足を$\mathrm{H}$,$\mathrm{K}$とする.

(1)$\mathrm{AG}:\mathrm{AM}$を求めよ.
(2)$\mathrm{AH}:\mathrm{GK}$を求めよ.
(3)$\triangle \mathrm{ABC}:\triangle \mathrm{GBC}$を求めよ.
東京理科大学 私立 東京理科大学 2012年 第3問
座標平面上の点$\mathrm{P}(p,\ q)$が,媒介変数$\theta$により
\[ p=1+2 \cos \theta,\quad q=1+\sin \theta \quad (-\pi<\theta \leqq \pi) \]
で与えられている.$a$を非負の定数とするとき,点$\mathrm{P}$から,原点$\mathrm{O}$と点$(1,\ a)$を通る直線に下ろした垂線を$\mathrm{PH}$とし,$\mathrm{H}$の座標を$(u,\ v)$とする.点$\mathrm{P}$が$p \geqq 2$を満たす範囲にあるとき,以下の問いに答えよ.

(1)$\theta$と$q$の値の範囲を求めよ.
(2)$u$を$a$と$\theta$を用いて表せ.
(3)$N=\sqrt{u^2+(2+a^2)v^2}$とおく.$N$を$a$と$\theta$を用いて表せ.
(4)各$a$に対して,点$\mathrm{P}$が$p \geqq 2$を満たすように動くとき,$(3)$で求めた$N$の最大値を$M(a)$により表す.

(i) $M(0)$を求めよ.
(ii) $a>0$のとき,$M(a)$を求めよ.
東京理科大学 私立 東京理科大学 2012年 第3問
$a$を$a>2$であるような実数とする.座標平面上で,曲線$\displaystyle y=\frac{1}{x}$を$C_1$とし,点$(a,\ a)$を中心とし点$(1,\ 1)$を通る円を$C_2$とする.曲線$C_1$と円$C_2$の点$(1,\ 1)$以外の共有点のうち,$x$座標が$1$より小さいものを$\mathrm{B}$とする.点$\mathrm{B}$から直線$y=x$に下ろした垂線と直線$y=x$の交点を$\mathrm{H}$とする.

(1)円$C_2$の方程式を求めよ.
(2)点$\mathrm{H}$の座標を求めよ.また,点$\mathrm{H}$と点$(1,\ 1)$の距離を求めよ.
(3)$t$を正の実数とする.直線$y=x$上にあり点$(1,\ 1)$からの距離が$t$である点のうち,$x$座標が$1$より大きいものを$\mathrm{P}$とする.点$\mathrm{P}$を通り直線$y=x$に垂直な直線と曲線$C_1$の交点のうち,$x$座標が$1$より小さいものを$\mathrm{Q}$とする.このとき,線分$\mathrm{PQ}$の長さを$t$を用いて表せ.
(4)直線$y=x$と線分$\mathrm{BH}$,および曲線$C_1$で囲まれた部分を,直線$y=x$の周りに$1$回転させてできる立体の体積を求めよ.
愛知学院大学 私立 愛知学院大学 2012年 第4問
一辺$10 \, \mathrm{cm}$の正四面体$\mathrm{ABCD}$がある.頂点$\mathrm{A}$から三角形$\mathrm{BCD}$に下ろした垂線を$\mathrm{AE}$とし,$\mathrm{DE}$の延長が辺$\mathrm{BC}$と交わった点を$\mathrm{F}$とする.このとき次の値を求めなさい.

(1)垂線$\mathrm{AE}$の長さ
(2)$\cos \angle \mathrm{AFD}$の値
(3)正四面体の体積
首都大学東京 公立 首都大学東京 2012年 第2問
原点O$(0,\ 0,\ 0)$と点A$(1,\ 1,\ 1)$を通る直線を$\ell$とし,3点B$(1,\ 0,\ 0)$,C$(0,\ 2,\ 0)$,D$(0,\ 0,\ 3)$を通る平面を$\alpha$とする.以下の問いに答えなさい.

(1)ベクトル$\overrightarrow{a}$は平面$\alpha$に垂直で,成分がすべて正であり,長さが7になるものとする.このとき,$\overrightarrow{a}$を成分で表しなさい.
(2)$\triangle$BCDの面積を求めなさい.
(3)Oから平面$\alpha$へ引いた垂線と平面$\alpha$との交点をHとする.線分OHの長さを求めなさい.
(4)Pは座標がすべて正である直線$\ell$上の点とする.Pを中心とする半径7の球面が点Qで平面$\alpha$に接するとき,P,Qの座標を求めなさい.
広島市立大学 公立 広島市立大学 2012年 第3問
空間内に4点O,A,B,Cがあり,次の条件を満たすものとする.
\[ \text{OA}=1,\ \text{OB}=1,\ \text{OC}=2,\ \angle \text{AOB}=\frac{\pi}{2},\ \angle \text{BOC}=\frac{\pi}{3},\ \angle \text{COA}=\frac{\pi}{4} \]
また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,Pは平面OAB上の点で$\overrightarrow{\mathrm{OP}}=x \overrightarrow{a}+y \overrightarrow{b}$と表されているとする.点Pが$|\overrightarrow{\mathrm{OP}}|=1$を満たして動くとき,以下の問いに答えよ.

(1)点Cから平面OABに下ろした垂線と平面OABの交点をQとする.したがって,$\text{CQ} \perp \text{OA},\ \text{CQ} \perp \text{OB}$である.$\overrightarrow{\mathrm{OQ}}=u \overrightarrow{a}+v \overrightarrow{b}$と表したとき,$u,\ v$を求めよ.
(2)$(ⅰ)$ \ 内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OC}}$の最大値と最小値を求めよ.また,最大値をとるときの$x,\ y$の値,最小値をとるときの$x,\ y$の値をそれぞれ求めよ.\\
$(ⅱ)$ \ $\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OC}}$のなす角$\theta$がとりうる値の範囲を求めよ.ただし,$0 \leqq \theta \leqq \pi$とする.
(3)内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OC}}$が最大値,最小値をとるときの点PをそれぞれP$_1$,P$_2$とおく.点P$_1$,P$_2$はいずれも直線OQ上にあることを示せ.ただし,Qは(1)で定めた点とする.
スポンサーリンク

「垂線」とは・・・

 まだこのタグの説明は執筆されていません。