タグ「垂線」の検索結果

23ページ目:全330問中221問~230問を表示)
上智大学 私立 上智大学 2012年 第2問
$1$辺の長さが$\sqrt{2}$の正方形$\mathrm{ABCD}$を底面とし,
\[ \mathrm{PA} = \mathrm{PB} = \mathrm{PC} = \mathrm{PD} = \sqrt{5} \]
である四角錐$\mathrm{PABCD}$を考える.
(図は省略)

(1)四角錐$\mathrm{PABCD}$のすべての面に接する球の中心を$\mathrm{O}$とし,$\mathrm{P}$から底面$\mathrm{ABCD}$に垂線$\mathrm{PH}$を下ろすとき
\[ \mathrm{PH}=[テ],\quad \mathrm{OH}=\frac{[ト]}{[ナ]} \]
である.
(2)辺$\mathrm{PB}$の中点を$\mathrm{Q}$,辺$\mathrm{PD}$の中点を$\mathrm{R}$とする.$3$点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{C}$を含む平面と辺$\mathrm{PA}$との交点を$\mathrm{S}$とする.このとき
\[ \mathrm{SP}=\frac{[ニ]}{[ヌ]} \sqrt{[ネ]} \]
である.$\mathrm{S}$から線分$\mathrm{AC}$に垂線$\mathrm{ST}$を下ろすとき
\[ \mathrm{ST}=\frac{[ノ]}{[ハ]},\quad \mathrm{CT}=\frac{[ヒ]}{[フ]} \]
である.さらに,四角形$\mathrm{CRSQ}$の面積は
\[ \frac{[ヘ]}{[ホ]} \sqrt{[マ]} \]
である.
北海学園大学 私立 北海学園大学 2012年 第3問
放物線$C:y=-x^2+9x$上の点$\mathrm{P}(t,\ -t^2+9t)$から$x$軸に下ろした垂線と$x$軸との交点を$\mathrm{H}$とする.また,点$\mathrm{Q}(9,\ 0)$に対して,三角形$\mathrm{PHQ}$の面積を$S_1$とする.ただし,$0<t<9$である.

(1)$S_1$を$t$を用いて表せ.
(2)$S_1$の最大値とそのときの$t$の値を求めよ.
(3)$t$が上の(2)で求めた値をとるとき,$C$と直線$\mathrm{PQ}$で囲まれた図形の面積$S_2$を求めよ.
甲南大学 私立 甲南大学 2012年 第2問
$a$を正の実数とする.空間内の$3$点$\mathrm{A}(0,\ 1,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(0,\ 0,\ 2)$を通る平面を$\alpha$とし,点$\mathrm{P}(0,\ 1-a,\ 0)$から平面$\alpha$に下ろした垂線の足を$\mathrm{H}$とする.このとき,以下の問いに答えよ.

(1)等式$\overrightarrow{\mathrm{PH}}=\overrightarrow{\mathrm{PA}}+s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$が成り立つように実数$s,\ t$の値を定めよ.
(2)線分$\mathrm{BC}$の中点を$\mathrm{M}$とするとき,点$\mathrm{H}$は直線$\mathrm{AM}$上にあることを示せ.
(3)実数$a$が$0<a<3$の範囲を動くとき,四面体$\mathrm{BCHP}$の体積の最大値を求めよ.
甲南大学 私立 甲南大学 2012年 第2問
$a$を正の実数とする.空間内の$3$点$\mathrm{A}(0,\ 1,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(0,\ 0,\ 2)$を通る平面を$\alpha$とし,点$\mathrm{P}(0,\ 1-a,\ 0)$から平面$\alpha$に下ろした垂線の足を$\mathrm{H}$とする.このとき,以下の問いに答えよ.

(1)等式$\overrightarrow{\mathrm{PH}}=\overrightarrow{\mathrm{PA}}+s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$が成り立つように実数$s,\ t$の値を定めよ.
(2)線分$\mathrm{BC}$の中点を$\mathrm{M}$とするとき,点$\mathrm{H}$は直線$\mathrm{AM}$上にあることを示せ.
(3)実数$a$が$0<a<3$の範囲を動くとき,四面体$\mathrm{BCHP}$の体積の最大値を求めよ.
西南学院大学 私立 西南学院大学 2012年 第6問
原点を$\mathrm{O}$とする空間に$2$点$\mathrm{A}$,$\mathrm{B}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.$\overrightarrow{a}$と$\overrightarrow{b}$のなす角が$0^\circ$より大きく$90^\circ$未満のとき,以下の問に答えよ.

(1)$\mathrm{A}$から直線$\mathrm{OB}$に下ろした垂線の足を$\mathrm{H}_1$とするとき,$\overrightarrow{\mathrm{OH}}_1$を$\overrightarrow{a}$および$\overrightarrow{b}$を用いて表せ.
(2)さらに$\mathrm{B}$から直線$\mathrm{OA}$に下ろした垂線の足を$\mathrm{H}_2$とする.$\overrightarrow{a}=(1,\ 1,\ 1)$,$\overrightarrow{b}=(2,\ 2,\ 1)$であるとき,線分$\mathrm{H}_1 \mathrm{H}_2$の長さを求めよ.
中央大学 私立 中央大学 2012年 第3問
$h>0,\ d \geqq 0$とし,座標空間において$4$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$,$\mathrm{C}(h,\ 0,\ -d)$,$\mathrm{D}(0,\ h,\ d)$を頂点とする四面体を考える.さらに$\mathrm{CD}=2$とする.したがって,四面体の$6$本の辺のうち向かい合う$2$辺の長さは$3$組とも互いに等しい.つまり
\[ \mathrm{AB}=\mathrm{CD},\quad \mathrm{AC}=\mathrm{BD},\quad \mathrm{AD}=\mathrm{BC} \]
となっており,$4$つの面はすべて互いに合同である.この四面体$\mathrm{ABCD}$について以下の問いに答えよ.

(1)$h$を$d$で表し,$d$のとりうる値の範囲を求めよ.

点$\mathrm{A}$を通り平面$\mathrm{BCD}$に垂直な直線と平面$\mathrm{BCD}$の交点を$\mathrm{P}$とおく.この点$\mathrm{P}$を点$\mathrm{A}$から平面$\mathrm{BCD}$に下ろした垂線の足とよぶ.同様に,点$\mathrm{B}$から平面$\mathrm{ACD}$に下ろした垂線の足を$\mathrm{Q}$,点$\mathrm{C}$から平面$\mathrm{ABD}$へ下ろした垂線の足を$\mathrm{R}$,点$\mathrm{D}$から平面$\mathrm{ABC}$へ下ろした垂線の足を$\mathrm{S}$とおく.

(2)点$\mathrm{R}$,$\mathrm{S}$は直線$\mathrm{AB}$上にあることに注意して,$\mathrm{R}$,$\mathrm{S}$の座標を$d$で表せ.また,四面体$\mathrm{ABCD}$の対称性を考慮して,点$\mathrm{P}$,$\mathrm{Q}$の座標を$d$で表せ.さらに,計算により$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BQ}}=0$を確認せよ.
(3)辺$\mathrm{BD}$の長さのとりうる値の範囲を求めよ.
(4)平面$\mathrm{ABC}$と平面$\mathrm{ACD}$が直線$\mathrm{AC}$に沿って角度$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$で交わっている.$\theta$のとりうる値の範囲を求めよ.ただし$2$平面の交わる角度とは,それぞれの平面に直交する$2$直線のなす角度である.
東京理科大学 私立 東京理科大学 2012年 第2問
曲線$y=x^2$上の点$\mathrm{P}(t,\ t^2)$から直線$y=x$へ垂線を引き,その交点を$\mathrm{H}$とする.ただし,$t>1$とする.

(1)点$\mathrm{H}$の座標を$t$を用いて表しなさい.
(2)範囲$x \geqq 1$において,曲線$y=x^2$と直線$y=x$および線分$\mathrm{PH}$とで囲まれた図形の面積を$S_1$とする.このとき,$S_1$を$t$を用いて表しなさい.
(3)曲線$y=x^2$と直線$y=x$で囲まれた図形の面積を$S_2$とする.$S_1=S_2$であるとき,$t$の値を求めなさい.ただし,$S_1$は$(2)$と同じとする.
北星学園大学 私立 北星学園大学 2012年 第3問
$\angle \mathrm{A}=90^\circ$,$\angle \mathrm{B}=30^\circ$,$\mathrm{AC}=2$の$\triangle \mathrm{ABC}$がある.$\mathrm{A}$から$\mathrm{BC}$へおろした垂線の足を$\mathrm{H}$とし,$\mathrm{AH}$を直径とする円の円周と辺$\mathrm{AB}$との交点を$\mathrm{D}$とする.以下の問に答えよ.

(1)円の直径を求めよ.
(2)$\mathrm{AD}$の長さを求めよ.
岡山理科大学 私立 岡山理科大学 2012年 第3問
原点$\mathrm{O}$を中心とする半径$2$の円に,点$\mathrm{P}(4,\ 0)$から引いた$2$つの接線の接点のうち,第$1$象限にある点を$\mathrm{A}$,残りの点を$\mathrm{B}$とする.直線$\mathrm{AB}$が$x$軸と交わる点を$\mathrm{C}$とする.$\mathrm{C}$から直線$\mathrm{AP}$に引いた垂線と$\mathrm{AP}$の交点を$\mathrm{D}$とする.このとき,次の設問に答えよ.

(1)線分$\mathrm{AP}$の長さを求めよ.
(2)線分$\mathrm{CD}$の長さを求めよ.
(3)$3$点$\mathrm{P}$,$\mathrm{C}$,$\mathrm{D}$を通る円の方程式を求めよ.
北海道薬科大学 私立 北海道薬科大学 2012年 第2問
次の各設問に答えよ.

(1)空間内に点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 4)$がある.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が定める平面上に原点$\mathrm{O}$から垂線を下ろし,この平面との交点を$\mathrm{P}$とする.
\[ \overrightarrow{\mathrm{OP}}=a \overrightarrow{\mathrm{OA}}+b \overrightarrow{\mathrm{OB}}+c \overrightarrow{\mathrm{OC}} \quad (a,\ b,\ c \text{は実数}) \]
とすると$a+b+c=[ア]$となる.また

$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AB}}=[イウ] a+[エ] b=[オ]$

$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AC}}=[カキ] a+[クケ] c=[コ]$

となる.よって,点$\mathrm{P}$の座標は$\displaystyle \left( \frac{[サ]}{[シ]},\ \frac{[ス]}{[セ]},\ \frac{[ソ]}{[タ]} \right)$となる.
(2)$4$個のさいころを同時に投げるとき,出た目の積が偶数になる確率は$\displaystyle \frac{[チツ]}{[テト]}$である.また,出た目の積が偶数になる確率が$0.994$以上になるには,同時に投げるさいころの数は最低$[ナ]$個必要である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
スポンサーリンク

「垂線」とは・・・

 まだこのタグの説明は執筆されていません。