タグ「垂線」の検索結果

11ページ目:全330問中101問~110問を表示)
名古屋市立大学 公立 名古屋市立大学 2015年 第4問
空間内の点$\mathrm{O}$,$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{B}$,$\mathrm{C}$を考える.このとき,ベクトル$\overrightarrow{\mathrm{OA}_1}$,$\overrightarrow{\mathrm{OA}_2}$はともに長さが$1$で,角度$\displaystyle \theta \left( 0<\theta \leqq \frac{\pi}{2} \right)$をなす.また点$\mathrm{B}$は$\mathrm{O}$,$\mathrm{A}_1$,$\mathrm{A}_2$を含む平面$\mathrm{H}$上に存在せず,ベクトル$\overrightarrow{\mathrm{OB}}$は,$\overrightarrow{\mathrm{OA}_1} \cdot \overrightarrow{\mathrm{OB}}=c_1$,$\overrightarrow{\mathrm{OA}_2} \cdot \overrightarrow{\mathrm{OB}}=c_2$を満たす(ただし$c_1,\ c_2$はいずれも$0$でない実数であるとする).さらにベクトル$\overrightarrow{\mathrm{OC}}$は,$\overrightarrow{\mathrm{OC}}=c_1 \overrightarrow{\mathrm{OA}_1}+c_2 \overrightarrow{\mathrm{OA}_2}$のように表され,かつベクトル$\overrightarrow{\mathrm{CB}}$と垂直である.このとき,次の問いに答えよ.

(1)角度$\theta$を求めよ.
(2)$|\overrightarrow{\mathrm{OB}}|^2>{c_1}^2+{c_2}^2$が成り立つことを示せ.ただし,$|\overrightarrow{\mathrm{OB}}|$はベクトル$\overrightarrow{\mathrm{OB}}$の長さを表す.
(3)$c_1=c_2=c$,$|\overrightarrow{\mathrm{OB}}|=b$とする.また,$\overrightarrow{\mathrm{OD}_1}=c \overrightarrow{\mathrm{OA}_1}$,$\overrightarrow{\mathrm{OD}_2}=c \overrightarrow{\mathrm{OA}_2}$となるように,空間上に点$\mathrm{D}_1$,$\mathrm{D}_2$を与える.四面体$\mathrm{D}_1 \mathrm{D}_2 \mathrm{CB}$の体積を,$b,\ c$を用いて表せ.
(4)$(3)$の条件の下で$3$点$\mathrm{D}_1$,$\mathrm{D}_2$,$\mathrm{B}$により定まる平面に対し,点$\mathrm{C}$から垂線を引いたとき,垂線と平面の交点を$\mathrm{T}$とする.このとき,$\mathrm{CT}$の長さを$b,\ c$で表せ.
北九州市立大学 公立 北九州市立大学 2015年 第4問
原点を$\mathrm{O}$として$3$点$\mathrm{A}(0,\ 1,\ 4)$,$\mathrm{B}(1,\ -1,\ 0)$,$\mathrm{C}(-1,\ 3,\ 2)$をとる.以下の問いに答えよ.

(1)点$\mathrm{A}$から直線$\mathrm{BC}$に引いた垂線と直線$\mathrm{BC}$との交点を$\mathrm{P}$とする.点$\mathrm{P}$の座標を求めよ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)線分$\mathrm{AP}$の中点を$\mathrm{Q}$とする.点$\mathrm{Q}$を中心とする半径$\mathrm{AQ}$の球面$\mathrm{S}$を考える.原点$\mathrm{O}$は球面$\mathrm{S}$の内側にあるか外側にあるかを答えよ.
(4)球面$\mathrm{S}$と線分$\mathrm{AB}$との交点のうち,点$\mathrm{A}$と異なる交点を$\mathrm{H}$とする.点$\mathrm{H}$の座標を求めよ.
九州大学 国立 九州大学 2014年 第3問
鋭角三角形$\triangle \mathrm{ABC}$について,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさを,それぞれ$A$,$B$,$C$とする.$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$,外心を$\mathrm{O}$とし,外接円の半径を$R$とする.

(1)$\mathrm{A}$と$\mathrm{O}$から辺$\mathrm{BC}$に下ろした垂線を,それぞれ$\mathrm{AD}$,$\mathrm{OE}$とする.このとき,
\[ \mathrm{AD}=2R \sin B \sin C,\quad \mathrm{OE}=R \cos A \]
を証明せよ.
(2)$\mathrm{G}$と$\mathrm{O}$が一致するならば$\triangle \mathrm{ABC}$は正三角形であることを証明せよ.
(3)$\triangle \mathrm{ABC}$が正三角形でないとし,さらに$\mathrm{OG}$が$\mathrm{BC}$と平行であるとする.このとき,
\[ \mathrm{AD}=3 \mathrm{OE},\quad \tan B \tan C=3 \]
を証明せよ.
横浜国立大学 国立 横浜国立大学 2014年 第3問
$\mathrm{O}$を原点とする座標空間に,$4$点
\[ \mathrm{A}(-2,\ 1,\ 3),\quad \mathrm{B}(s,\ 3,\ -1),\quad \mathrm{C}(1,\ 3,\ 4),\quad \mathrm{D}(t,\ 2t,\ 2t) \]
がある.ただし,$s,\ t$は実数で$t \neq 0$である.$\mathrm{A}$を通り$\overrightarrow{\mathrm{OC}}$に平行な直線と,$\mathrm{B}$を通り$\overrightarrow{\mathrm{OD}}$に平行な直線が点$\mathrm{P}$で交わるとする.次の問いに答えよ.

(1)$s$の値および$\mathrm{P}$の座標を求めよ.
以下では$\triangle \mathrm{PAB} \text{∽} \triangle \mathrm{OCD}$を仮定する.
(2)$t$の値を求めよ.
(3)$\mathrm{D}$から平面$\mathrm{PAB}$に下ろした垂線を$\mathrm{DH}$とするとき,$\mathrm{H}$の座標を求めよ.
横浜国立大学 国立 横浜国立大学 2014年 第2問
$\mathrm{O}$を原点とする座標空間に,$4$点
\[ \mathrm{A}(-2,\ 1,\ 3),\quad \mathrm{B}(s,\ 3,\ -1),\quad \mathrm{C}(1,\ 3,\ 4),\quad \mathrm{D}(t,\ 2t,\ 2t) \]
がある.ただし,$s,\ t$は実数で$t \neq 0$である.$\mathrm{A}$を通り$\overrightarrow{\mathrm{OC}}$に平行な直線と,$\mathrm{B}$を通り$\overrightarrow{\mathrm{OD}}$に平行な直線が点$\mathrm{P}$で交わるとする.次の問いに答えよ.

(1)$s$の値および$\mathrm{P}$の座標を求めよ.
以下では$\triangle \mathrm{PAB} \text{∽} \triangle \mathrm{OCD}$を仮定する.
(2)$t$の値を求めよ.
(3)$\mathrm{D}$から平面$\mathrm{PAB}$に下ろした垂線を$\mathrm{DH}$とするとき,$\mathrm{H}$の座標を求めよ.
京都大学 国立 京都大学 2014年 第1問
座標空間における次の$3$つの直線$\ell$,$m$,$n$を考える:

$\ell$は点$\mathrm{A}(1,\ 0,\ -2)$を通り,ベクトル$\overrightarrow{u}=(2,\ 1,\ -1)$に平行な直線である.
$m$は点$\mathrm{B}(1,\ 2,\ -3)$を通り,ベクトル$\overrightarrow{v}=(1,\ -1,\ 1)$に平行な直線である.
$n$は点$\mathrm{C}(1,\ -1,\ 0)$を通り,ベクトル$\overrightarrow{w}=(1,\ 2,\ 1)$に平行な直線である.

$\mathrm{P}$を$\ell$上の点として,$\mathrm{P}$から$m$,$n$へ下ろした垂線の足をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.このとき,$\mathrm{PQ}^2+\mathrm{PR}^2$を最小にするような$\mathrm{P}$と,そのときの$\mathrm{PQ}^2+\mathrm{PR}^2$を求めよ.
京都大学 国立 京都大学 2014年 第3問
座標空間における次の$3$つの直線$\ell$,$m$,$n$を考える:

$\ell$は点$\mathrm{A}(1,\ 0,\ -2)$を通り,ベクトル$\overrightarrow{u}=(2,\ 1,\ -1)$に平行な直線である.
$m$は点$\mathrm{B}(1,\ 2,\ -3)$を通り,ベクトル$\overrightarrow{v}=(1,\ -1,\ 1)$に平行な直線である.
$n$は点$\mathrm{C}(1,\ -1,\ 0)$を通り,ベクトル$\overrightarrow{w}=(1,\ 2,\ 1)$に平行な直線である.

$\mathrm{P}$を$\ell$上の点として,$\mathrm{P}$から$m$,$n$へ下ろした垂線の足をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.このとき,$\mathrm{PQ}^2+\mathrm{PR}^2$を最小にするような$\mathrm{P}$と,そのときの$\mathrm{PQ}^2+\mathrm{PR}^2$を求めよ.
名古屋工業大学 国立 名古屋工業大学 2014年 第4問
座標空間に立方体$K$があり,原点$\mathrm{O}$と$3$点$\mathrm{A}(a,\ b,\ 0)$,$\mathrm{B}(r,\ s,\ t)$,$\mathrm{C}(3,\ 0,\ 0)$が次の条件をみたしている.

(i) $\mathrm{OA}$,$\mathrm{AB}$,$\mathrm{BC}$は立方体$K$の辺である.
(ii) $\mathrm{OC}$は立方体$K$の辺ではない.
(iii) $b>0,\ t>0$

このとき,以下の問いに答えよ.

(1)立方体$K$の一辺の長さ$l$を求めよ.
(2)点$\mathrm{A}$の座標を求めよ.
(3)点$\mathrm{B}$の座標を求めよ.
(4)辺$\mathrm{AB}$上の点$\mathrm{P}$から$x$軸に下ろした垂線の足を$\mathrm{H}(x,\ 0,\ 0)$とする.$\mathrm{PH}$の長さを$x$を用いて表せ.
(5)立方体$K$を$x$軸を回転軸として$1$回転させて得られる回転体の体積$V$を求めよ.
愛知教育大学 国立 愛知教育大学 2014年 第7問
$\displaystyle 0<t<\frac{\pi}{2}$とする.座標平面上に,原点$\mathrm{O}$を中心とする単位円$C$上の点$\mathrm{P}(\cos t,\ \sin t)$と,$x$軸上の点$\mathrm{Q}(\cos t,\ 0)$をとり,点$\mathrm{P}$における$C$の接線を$\ell$とする.また,点$\mathrm{Q}$から$\ell$に下ろした垂線と$\ell$との交点を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\mathrm{PR}$と$\mathrm{QR}$を$t$を用いて表せ.
(3)$(2)$で求めた$\mathrm{PR}$を$x(t)$,$\mathrm{QR}$を$y(t)$とする.点$\mathrm{S}(x(t),\ y(t))$の軌跡を求めよ.
山形大学 国立 山形大学 2014年 第2問
$xy$平面上の曲線$C:y=\sqrt{x}$がある.曲線$C$上の点$\mathrm{P}(t,\ \sqrt{t}) (t>0)$における接線を$\ell$とする.さらに,直線$\ell$と$x$軸の交点を$\mathrm{Q}$とする.次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)点$\mathrm{Q}$の座標を$t$を用いて表せ.
(3)点$\mathrm{P}$から$x$軸に下ろした垂線を$\mathrm{PR}$とするとき,$\triangle \mathrm{PQR}$を$x$軸のまわりに$1$回転してできる立体の体積を$t$を用いて表せ.
(4)曲線$C$,直線$\ell$および$x$軸で囲まれた図形を,$x$軸のまわりに$1$回転してできる立体の体積を$t$を用いて表せ.
スポンサーリンク

「垂線」とは・・・

 まだこのタグの説明は執筆されていません。