タグ「垂直」の検索結果

28ページ目:全311問中271問~280問を表示)
南山大学 私立 南山大学 2011年 第2問
座標平面上に放物線$C:y=x^2$と$4$点$\mathrm{P}(p,\ p^2)$,$\mathrm{Q}(-p,\ p^2)$,$\mathrm{R}(-p,\ p^2+2p)$,$\mathrm{S}(p,\ p^2+2p)$がある.また,$3$次関数$y=f(x)$は$x=-p$で極小値$p^2$,$x=p$で極大値$p^2+2p$をとる.ただし,$p>0$とする.

(1)$C$と線分$\mathrm{PQ}$で囲まれた部分の面積と正方形$\mathrm{PQRS}$の面積が等しくなる$p$の値を求めよ.
(2)$f(x)$を$p$で表せ.
(3)$\mathrm{P}$における$C$の接線を$\ell$とする.曲線$y=f(x)$上の点$(a,\ f(a))$における接線が$\ell$と垂直になるとき,$a$を$p$で表せ.
神奈川大学 私立 神奈川大学 2011年 第2問
曲線$\displaystyle C:y=\frac{1}{x} (x>0)$上の点$\displaystyle \mathrm{P} \left( p,\ \frac{1}{p} \right)$における接線を$\ell$とする.接線$\ell$と$x$軸との交点を$\mathrm{Q}$とする.さらに,$\mathrm{Q}$を通り$x$軸に垂直な直線と曲線$C$との交点を$\mathrm{R}$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$x$軸および$y$軸とで囲まれた図形の面積を求めよ.
(3)曲線$C$と接線$\ell$および線分$\mathrm{QR}$とで囲まれた図形の面積を求めよ.
日本女子大学 私立 日本女子大学 2011年 第2問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$で,辺$\mathrm{OA}$を$t:(1-t)$に内分する点を$\mathrm{D}$,辺$\mathrm{BC}$の中点を$\mathrm{E}$,辺$\mathrm{DE}$を$1:3$に内分する点を$\mathrm{F}$とする.ただし,$0<t<1$とする.

(1)$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とするとき,内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{a} \cdot \overrightarrow{c}$,$\overrightarrow{b} \cdot \overrightarrow{c}$の値を求めよ.
(2)内積$\displaystyle \overrightarrow{a} \cdot \frac{\overrightarrow{b}+\overrightarrow{c}}{2}$,$\displaystyle \frac{\overrightarrow{b}+\overrightarrow{c}}{2} \cdot \frac{\overrightarrow{b}+\overrightarrow{c}}{2}$の値を求めよ.
(3)内積$\overrightarrow{\mathrm{OF}} \cdot \overrightarrow{\mathrm{DE}}$を$t$の式で表せ.
(4)$\overrightarrow{\mathrm{OF}}$と$\overrightarrow{\mathrm{DE}}$が垂直になるように$t$の値を定めよ.
関西大学 私立 関西大学 2011年 第4問
次の$[ ]$をうめよ.

(1)実数$x,\ y,\ z$が$\displaystyle \frac{x+y}{5}=\frac{y+2z}{4}=\frac{z+3x}{10}$を満たしている.$x^3+y^3+z^3=-36$が成り立つのは,
\[ \frac{x+y}{5}=\frac{y+2z}{4}=\frac{z+3x}{10} \]
の値が$[$①$]$のときである.

(2)$\displaystyle x-y=\frac{\pi}{3}$であるとき,$\displaystyle \frac{\sin x-\sin y}{\cos x+\cos y}$の値は$[$②$]$である.

(3)座標空間における$2$点$\mathrm{A}(0,\ 1,\ 1)$,$\mathrm{B}(1,\ 3,\ 0)$を通る直線$\ell$を考える.$\ell$上の点$\mathrm{P}$において,原点$\mathrm{O}$と$\mathrm{P}$を結ぶ直線が直線$\ell$と垂直に交わるとき,点$\mathrm{P}$の$y$座標は$[$③$]$である.
(4)連立方程式$\left\{ \begin{array}{l}
4(\log_2x)^2+2 \log_2y=1 \\
x^2y=2
\end{array} \right.$を解くと,$x=[$④$]$,$y=[$⑤$]$である.
(5)$2$桁の自然数を$N$とし,$N$の$1$の位と$10$の位の$2$つの数の和を$T$とする.$\displaystyle \frac{N}{T}$の最小値は$[$⑥$]$である.
神奈川大学 私立 神奈川大学 2011年 第1問
次の空欄を適当に補え.

(1)不等式$|4x-3| \leqq -x+7$を解くと$[$(\mathrm{a])$}$である.
(2)$2$つのベクトル$\overrightarrow{a}=(3,\ 4)$,$\overrightarrow{b}=(-1,\ 2)$に対して,$\overrightarrow{a}+k \overrightarrow{b}$と$\overrightarrow{a}-k \overrightarrow{b}$が垂直であるとき,正の定数$k$の値は$[$(\mathrm{b])$}$である.
(3)数列
\[ \frac{1}{\sqrt{1}+\sqrt{3}},\ \frac{1}{\sqrt{3}+\sqrt{5}},\ \frac{1}{\sqrt{5}+\sqrt{7}},\ \cdots,\ \frac{1}{\sqrt{2n-1}+\sqrt{2n+1}},\ \cdots \]
の第$24$項までの和は$[$(\mathrm{c])$}$である.
(4)方程式$\log_2x=2 \log_x2-1$を解くと,$x=[$(\mathrm{d])$}$である.ただし,$x \neq 2$とする.
(5)$1$個のさいころを$2$回投げるとき,$1$回目に出る目の数と$2$回目に出る目の数のうち小さくない方を$X$とする.$X=4$となる確率は$[$(\mathrm{e])$}$である.
(6)関数$f(x)=x^2-x^3$は$x=[$(\mathrm{f])$}$で極大値$[$(\mathrm{g])$}$をとる.
藤田保健衛生大学 私立 藤田保健衛生大学 2011年 第3問
次の問いに答えよ.

(1)$y=3 \cos x$のグラフ上の$1$点$\displaystyle \left( \frac{\pi}{6},\ \frac{3 \sqrt{3}}{2} \right)$における接線に平行な単位ベクトルを$\overrightarrow{a}=(a_1,\ a_2)$,垂直な単位ベクトルを$\overrightarrow{b}=(b_1,\ b_2)$とすると,$(a_1,\ a_2)=[ ]$,$(b_1,\ b_2)=[ ]$である.
(2)$a_1>0$,$\sqrt{13}(a_1,\ a_2)=(A_1,\ A_2)$とおくとき,行列$A=\left( \begin{array}{cc}
A_1+2 & A_2-2 \\
A_1 & A_2
\end{array} \right)$に対し,連立方程式$A \left( \begin{array}{c}
x \\
y
\end{array} \right)=m \left( \begin{array}{c}
x \\
y
\end{array} \right)$が$(x,\ y)=(0,\ 0)$以外の解をもつとき,定数$m$の値は$[ ]$である.次に行列$A$で表される$1$次変換によって,点$\mathrm{P}(x,\ y)$が点$\mathrm{Q}(X,\ Y)$に移り,ベクトル$\overrightarrow{\mathrm{OP}}$とベクトル$\overrightarrow{\mathrm{OQ}}$が同じ向きになったという.ただし点$\mathrm{O}(0,\ 0)$であり,$x \neq 0$とする.このとき$\overrightarrow{\mathrm{OQ}}=k \overrightarrow{\mathrm{OP}}$となる定数$k$の値は$[ ]$である.さらにこのとき直線$\mathrm{PQ}$の方程式は$y=[ ]$である.
千葉工業大学 私立 千葉工業大学 2011年 第4問
三角形$\mathrm{OAB}$は面積が$9 \sqrt{7}$で,$\mathrm{OA}=6$,$\mathrm{OB}=8$であり,$\angle \mathrm{AOB}$は鈍角である.辺$\mathrm{AB}$上に$2$点$\mathrm{L}$,$\mathrm{M}$があり,線分$\mathrm{OL}$上に点$\mathrm{N}$があって,
\[ \mathrm{AL}:\mathrm{LB}=1:3,\quad \mathrm{AM}:\mathrm{MB}=\mathrm{ON}:\mathrm{NL}=t:(1-t) \]
(ただし,$0<t<1$)が成り立っている.このとき,次の問いに答えよ.

(1)$\displaystyle \sin \angle \mathrm{AOB}=\frac{[ア] \sqrt{[イ]}}{[ウ]}$であり,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=[エオ]$である.

(2)$\overrightarrow{\mathrm{ON}}$,$\overrightarrow{\mathrm{NM}}$は$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を用いて


$\displaystyle \overrightarrow{\mathrm{ON}}=\frac{[カ]}{[キ]} t \overrightarrow{\mathrm{OA}}+\frac{[ク]}{[ケ]} t \overrightarrow{\mathrm{OB}}$

$\displaystyle \overrightarrow{\mathrm{NM}}=(1-\frac{[コ]}{[サ]}t) \overrightarrow{\mathrm{OA}}+\frac{[シ]}{[ス]} t \overrightarrow{\mathrm{OB}}$


と表される.
(3)$\overrightarrow{\mathrm{NM}}$が$\overrightarrow{\mathrm{AB}}$と垂直になるのは,$\displaystyle t=\frac{[セ]}{[ソ]}$のときである.このとき,三角形$\mathrm{NAB}$の面積は$[タ] \sqrt{[チ]}$である.
産業医科大学 私立 産業医科大学 2011年 第2問
原点を$\mathrm{O}$とする座標空間内の$3$点$\mathrm{A}(a,\ 0,\ 0)$,$\mathrm{B}(0,\ b,\ 0)$,$\mathrm{C}(0,\ 0,\ c)$に対し,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\pi$とおく.ただし,$a>0$,$b>0$,$c>0$とする.次の問いに答えなさい.

(1)$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}+u \overrightarrow{\mathrm{OC}}$とおく.点$\mathrm{P}$が平面$\pi$上にあって,$\overrightarrow{\mathrm{OP}}$が平面$\pi$と垂直になるように,実数$s,\ t,\ u$の値をそれぞれ$a,\ b,\ c$を用いて表しなさい.
(2)線分$\mathrm{AB}$の中点を$\mathrm{M}$とし,点$\mathrm{Q}$は$\overrightarrow{\mathrm{CQ}}=r \overrightarrow{\mathrm{CM}}$を満たす点であるとする.ベクトル$\overrightarrow{\mathrm{OQ}}$の大きさ$|\overrightarrow{\mathrm{OQ}}|$を最小にする実数$r$の値と,そのときの$|\overrightarrow{\mathrm{OQ}}|$の値を,それぞれ$a,\ b,\ c$を用いて表しなさい.
(3)$\triangle \mathrm{OAB}$,$\triangle \mathrm{OBC}$,$\triangle \mathrm{OCA}$の面積を,それぞれ$S_1,\ S_2,\ S_3$とするとき,$\triangle \mathrm{ABC}$の面積$S$を$S_1,\ S_2,\ S_3$を用いて表しなさい.
京都薬科大学 私立 京都薬科大学 2011年 第3問
次の$[ ]$にあてはまる数または式を記入せよ.

$t>0$とする.放物線$y=x^2$上の点$\mathrm{P}(t,\ t^2)$における接線$\ell_1$と$x$軸との交点$\mathrm{A}$の$x$座標は$[ ]$である.原点$\mathrm{O}$および$2$点$\mathrm{P}$,$\mathrm{A}$を通る放物線の方程式は$y=[ ]x^2-[ ]x$であり,この放物線の原点における接線$\ell_2$の方程式は$y=-[ ]x$である.$2$直線$\ell_1$,$\ell_2$の交点の座標は$([ ],\ -[ ])$であり,放物線$y=x^2$と$2$直線$\ell_1$,$\ell_2$で囲まれた図形の面積は$[$*$]$である.
点$\mathrm{P}$を通り,$\ell_1$に垂直な直線$\ell_3$の方程式は$y=-[ ]x+[ ]$であり,$\ell_3$と$y$軸および曲線$y=x^2 (x \geqq 0)$で囲まれた図形の面積は$[$**$]$である.そして,$[$**$]:[$*$]=6:1$となるのは,$t=[ ]$のときである.
大阪薬科大学 私立 大阪薬科大学 2011年 第3問
次の問いに答えなさい.

$1$から$6$までのどの目も同様に確からしく出るサイコロ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.$\mathrm{A}$を振って出た目を$x$,$\mathrm{B}$を振って出た目を$y$,$\mathrm{C}$を振って出た目を$z$とする.

(1)積$xyz$が奇数である確率は$[ ]$である.
(2)$(x-y)(y-z)=0$となる確率は$[ ]$である.
(3)空間のベクトル$\overrightarrow{a}=(x,\ y,\ z)$に対して,$\overrightarrow{a}$と$\overrightarrow{p}=(2,\ -1,\ 0)$が垂直である確率は$[ ]$,$\overrightarrow{a}$と$\overrightarrow{q}=(1,\ 2,\ 3)$が平行である確率は$[ ]$である.
(4)$\log_3 x+\log_3 y+\log_3 z$が整数となる確率を求めなさい.
スポンサーリンク

「垂直」とは・・・

 まだこのタグの説明は執筆されていません。