タグ「垂直」の検索結果

27ページ目:全311問中261問~270問を表示)
小樽商科大学 国立 小樽商科大学 2011年 第4問
座標平面上に点$\displaystyle \mathrm{A} \left( 12,\ \frac{15}{2} \right)$と放物線$C:y=x^2$がある.放物線$C$上に点$\mathrm{P}$があり,点$\mathrm{P}$における放物線$C$の接線は,$2$点$\mathrm{A}$,$\mathrm{P}$を通る直線に垂直である.このとき,点$\mathrm{P}$の座標を求めよ.
高知大学 国立 高知大学 2011年 第1問
空間ベクトル$\overrightarrow{a}=(-1,\ 3,\ -2)$,$\overrightarrow{b}=(1,\ -1,\ 0)$,$\overrightarrow{c}=\overrightarrow{a}+t \overrightarrow{b}$とするとき,次の問いに答えよ.ただし,$t$は任意の正の実数とする.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$と$\overrightarrow{a} \cdot \overrightarrow{c}$を求めよ.
(2)$\overrightarrow{a}$と$\overrightarrow{c}$が垂直になるときの$t$の値を求めよ.
(3)$|\overrightarrow{c}|^2$を$t$で表せ.
(4)$|\overrightarrow{c}|$の最小値とそのときの$t$の値を求めよ.
(5)$|\overrightarrow{c}|=|\overrightarrow{a}|$となる$t$の値を求めよ.
長崎大学 国立 長崎大学 2011年 第8問
曲線$y=\log x$の接線は常にこの曲線の上側にあることを利用して,次の問いに答えよ.以下,$k$は自然数とする.

(1)点$\mathrm{A}_k(k,\ 0)$を通り$x$軸に垂直な直線と曲線$y=\log x$との交点を${\mathrm{A}_k}^\prime$とし,${\mathrm{A}_k}^\prime$におけるこの曲線の接線を$\ell_k$とする.また,$k \geqq 2$のとき,$\displaystyle \mathrm{B}_k \left( k-\frac{1}{2},\ 0 \right)$,$\displaystyle \mathrm{C}_k \left( k+\frac{1}{2},\ 0 \right)$を通り$x$軸に垂直な直線と接線$\ell_k$との交点をそれぞれ${\mathrm{B}_k}^\prime$,${\mathrm{C}_k}^\prime$とする.四角形$\mathrm{B}_k \mathrm{C}_k {\mathrm{C}_k}^\prime {\mathrm{B}_k}^\prime$の面積を求めよ.
(2)次の2つの値の大小を比較せよ.

(i) $\log k$と$\displaystyle \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \log x \, dx \quad$(ただし,$k \geqq 2$)
(ii) $\displaystyle \frac{\log k+\log (k+1)}{2}$と$\displaystyle \int_k^{k+1} \log x \, dx \quad$(ただし,$k \geqq 1$)

(3)$\displaystyle a_n=\log (n!)-\frac{1}{2}\log n$とおくと,2以上の自然数$n$について,次の不等式が成り立つことを示せ.
\[ \int_{\frac{3}{2}}^n \log x \, dx<a_n<\int_1^n \log x \, dx \]
(4)2以上の自然数$n$について
\[ \left\{
\begin{array}{l}
U_n=\left( n+\displaystyle\frac{1}{2} \right) \log n-n+\displaystyle\frac{3}{2} \left( 1-\log \displaystyle\frac{3}{2} \right) \\
V_n=\left( n+\displaystyle\frac{1}{2} \right) \log n-n+1
\end{array}
\right. \]
とおくとき,次の不等式を示せ.
\[ U_n<\log (n!)<V_n \]
浜松医科大学 国立 浜松医科大学 2011年 第1問
$2$次曲線$C$が媒介変数$\theta$を用いて,
\[ x=3+5 \cos \theta,\quad y=2+3 \sin \theta \quad (0 \leqq \theta \leqq 2\pi) \]
と表されている.このとき,次の問いに答えよ.

(1)曲線$C$の方程式を$x,\ y$を用いて表せ.また,$C$を座標平面上に図示せよ.
(2)曲線$C$上の点$\mathrm{P}(3+5 \cos \theta,\ 2+3 \sin \theta)$における$C$の接線$\ell$の方程式は,
\[ \frac{\cos \theta}{5}(x-3)+\frac{\sin \theta}{3}(y-2)=1 \]
となることを示せ.
(3)曲線$C$の焦点を$\mathrm{F}_1$,$\mathrm{F}_2$とする.$i=1,\ 2$に対し,$\mathrm{F}_i$を通り,接線$\ell$に垂直な直線$m_i$の方程式を求めよ.
(4)$i=1,\ 2$に対し,直線$m_i$と$\ell$との交点を$\mathrm{Q}_i$とする.点$\mathrm{O}^\prime(3,\ 2)$とするとき,線分$\mathrm{O}^\prime \mathrm{Q}_i$の長さを求めよ.
(5)$\mathrm{P}$が曲線$C$を一周するとき,線分$\mathrm{Q}_1 \mathrm{Q}_2$の長さの最大値,最小値,およびそのときの点$\mathrm{P}$をそれぞれ求めよ.
東京海洋大学 国立 東京海洋大学 2011年 第3問
三角形$\mathrm{OAB}$において,次を証明せよ.

(1)ベクトル$\overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$とベクトル$\overrightarrow{\mathrm{OB}}+t \overrightarrow{\mathrm{OA}}$の長さが等しくなるような$\pm 1$以外の実数$t$が存在することは$\mathrm{OA}=\mathrm{OB}$であるための必要十分条件である.
(2)ベクトル$\overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$とベクトル$\overrightarrow{\mathrm{OB}}+t \overrightarrow{\mathrm{OA}}$が垂直になるような$t<-1$である実数$t$が存在することは$\angle \mathrm{AOB}<90^\circ$であるための必要十分条件である.
大分大学 国立 大分大学 2011年 第3問
$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおくと,$|\overrightarrow{a}|=3$,$|\overrightarrow{b}|=2$,$\displaystyle \cos \angle \mathrm{AOB}=\frac{5}{6}$が成り立っている.$\mathrm{OA}$の中点を$\mathrm{P}$とし,半直線$\mathrm{AB}$上に$\mathrm{AB}:\mathrm{AH}=1:s (s>0)$となる点$\mathrm{H}$をとる.

(1)$\overrightarrow{\mathrm{OH}}$を$s,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表しなさい.
(2)直線$\mathrm{OH}$と直線$\mathrm{AB}$が垂直に交わるような$s$の値を求めよ.
(3)$(2)$のとき,直線$\mathrm{OH}$と直線$\mathrm{PB}$の交点を$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表しなさい.
立教大学 私立 立教大学 2011年 第2問
座標平面上の直線$\ell$を$y=2x$,直線$m$を$\displaystyle y=-\frac{x}{2}$とする.このとき,次の問に答えよ.

(1)点P$(x,\ y)$に対し,Pを通り$\ell$に垂直な直線と$\ell$との交点をQ$(x^\prime, y^\prime)$とする.また,Pを通り$m$に垂直な直線と$m$との交点をR$(x^{\prime\prime},\ y^{\prime\prime})$とする.このとき,
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right) =A \left( \begin{array}{c}
x \\
y
\end{array} \right),\quad \left( \begin{array}{c}
x^{\prime\prime} \\
y^{\prime\prime}
\end{array} \right) =B \left( \begin{array}{c}
x \\
y
\end{array} \right) \]
が成り立つような行列$A,\ B$を求めよ.
(2)$A,\ B$を(1)で求めた行列とする.このとき,行列$C=\left( \begin{array}{rr}
\displaystyle\frac{14}{5} & -\displaystyle\frac{2}{5} \\ \\
-\displaystyle\frac{2}{5} & \displaystyle\frac{11}{5}
\end{array} \right)$に対して$C=\alpha A+\beta B$をみたす実数$\alpha,\ \beta$を求めよ.
(3)$n$を自然数とするとき,$C^n$を求めよ.
北海学園大学 私立 北海学園大学 2011年 第1問
次の問いに答えよ.

(1)$x^2-4x+3<0$を満たすような$x^2-6x+8=0$の解を求めよ.
(2)座標平面上の$2$点$(2,\ 3)$と$(4,\ 2)$を通る直線に垂直に交わり,かつ円$x^2+y^2=5$に接する直線の方程式を求めよ.
(3)三角形$\mathrm{ABC}$において,$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}=2:(1+\sqrt{3}):\sqrt{2}$であるとき,$\angle \mathrm{B}$の大きさを求めよ.また,$\sin A$の値を求めよ.
東北学院大学 私立 東北学院大学 2011年 第6問
平行四辺形$\mathrm{OABC}$において,$\mathrm{OA}=3$,$\mathrm{OC}=2$とし,辺$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{L}$,辺$\mathrm{AB}$の中点を$\mathrm{M}$,辺$\mathrm{BC}$を$2:1$に内分する点を$\mathrm{N}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{LN}}$を$\overrightarrow{a}$,$\overrightarrow{c}$で表せ.
(2)線分$\mathrm{OM}$と$\mathrm{LN}$の交点を$\mathrm{P}$とするとき,$\mathrm{OP}:\mathrm{PM}$を求めよ.
(3)線分$\mathrm{OM}$と$\mathrm{LN}$が垂直であるとき,線分$\mathrm{LN}$の長さを求めよ.
明治大学 私立 明治大学 2011年 第3問
次の連立不等式で表される領域$D$を考える.
\[ \left\{ \begin{array}{l}
\displaystyle \left( x-\frac{1}{2} \right)^2+y^2 \leqq 1 \\
\displaystyle y \leqq -2x+\frac{3}{2} \\
\displaystyle y \leqq x+\frac{7}{10}
\end{array} \right. \]
以下の問に答えなさい.

(1)$y$切片が$k$で,直線$\displaystyle y=-2x+\frac{3}{2}$に垂直な直線を$\ell$とする.直線$\ell$が領域$D$と共有点を持つとき,$k$のとる範囲は,
\[ -\frac{[チ]}{[ツ]}-\frac{\sqrt{[テ]}}{[ト]} \leqq k \leqq \frac{[ナ]}{[ニ]} \]
である.
(2)直線$\ell$が領域$D$で切り取られる線分の長さを$L$とおく.$L$が最大となるのは,$\displaystyle k=-\frac{[ヌ]}{[ネ]}$のときであり,そのとき,$\displaystyle L=[ノ]+\frac{\sqrt{[ハ]}}{[ヒフ]}$となる.
スポンサーリンク

「垂直」とは・・・

 まだこのタグの説明は執筆されていません。