タグ「垂直」の検索結果

23ページ目:全311問中221問~230問を表示)
上智大学 私立 上智大学 2012年 第3問
一辺の長さが$1$の正四面体$\mathrm{OABC}$を考える.底面$\mathrm{ABC}$の内接円の半径を$r$とおき,頂点$\mathrm{O}$を通り底面$\mathrm{ABC}$に垂直な直線からの距離が$r$以下である点全体からなる円柱を$T$とする.

(1)$\displaystyle r=\frac{\sqrt{[ネ]}}{[ノ]}$である.
(2)正四面体$\mathrm{OABC}$の高さは$\displaystyle \frac{\sqrt{[ハ]}}{[ヒ]}$である.
(3)辺$\mathrm{AB}$の中点と頂点$\mathrm{O}$とを結ぶ線分上に点$\mathrm{P}$をとり,$x=\mathrm{OP}$とおく.$\mathrm{P}$を通り底面$\mathrm{ABC}$に平行な平面による側面$\mathrm{OAB}$の切り口を$L$とする.
$L$が$T$に含まれるような$x$の最大値を$x_1$とすると
\[ x_1=\frac{\sqrt{[フ]}}{[ヘ]} \]
である.
$\displaystyle x_1 \leqq x \leqq \frac{\sqrt{3}}{2}$のとき,$L$と$T$の共通部分の長さは
\[ \frac{[ホ]}{[マ]} \sqrt{\frac{[ミ]}{[ム]}-x^2} \]
である.
正四面体$\mathrm{OABC}$の表面で$T$に含まれる部分の面積は
\[ \frac{\pi}{[メ]} \]
である.
中央大学 私立 中央大学 2012年 第3問
$h>0,\ d \geqq 0$とし,座標空間において$4$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$,$\mathrm{C}(h,\ 0,\ -d)$,$\mathrm{D}(0,\ h,\ d)$を頂点とする四面体を考える.さらに$\mathrm{CD}=2$とする.したがって,四面体の$6$本の辺のうち向かい合う$2$辺の長さは$3$組とも互いに等しい.つまり
\[ \mathrm{AB}=\mathrm{CD},\quad \mathrm{AC}=\mathrm{BD},\quad \mathrm{AD}=\mathrm{BC} \]
となっており,$4$つの面はすべて互いに合同である.この四面体$\mathrm{ABCD}$について以下の問いに答えよ.

(1)$h$を$d$で表し,$d$のとりうる値の範囲を求めよ.

点$\mathrm{A}$を通り平面$\mathrm{BCD}$に垂直な直線と平面$\mathrm{BCD}$の交点を$\mathrm{P}$とおく.この点$\mathrm{P}$を点$\mathrm{A}$から平面$\mathrm{BCD}$に下ろした垂線の足とよぶ.同様に,点$\mathrm{B}$から平面$\mathrm{ACD}$に下ろした垂線の足を$\mathrm{Q}$,点$\mathrm{C}$から平面$\mathrm{ABD}$へ下ろした垂線の足を$\mathrm{R}$,点$\mathrm{D}$から平面$\mathrm{ABC}$へ下ろした垂線の足を$\mathrm{S}$とおく.

(2)点$\mathrm{R}$,$\mathrm{S}$は直線$\mathrm{AB}$上にあることに注意して,$\mathrm{R}$,$\mathrm{S}$の座標を$d$で表せ.また,四面体$\mathrm{ABCD}$の対称性を考慮して,点$\mathrm{P}$,$\mathrm{Q}$の座標を$d$で表せ.さらに,計算により$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BQ}}=0$を確認せよ.
(3)辺$\mathrm{BD}$の長さのとりうる値の範囲を求めよ.
(4)平面$\mathrm{ABC}$と平面$\mathrm{ACD}$が直線$\mathrm{AC}$に沿って角度$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$で交わっている.$\theta$のとりうる値の範囲を求めよ.ただし$2$平面の交わる角度とは,それぞれの平面に直交する$2$直線のなす角度である.
東京理科大学 私立 東京理科大学 2012年 第4問
平面上で点$\mathrm{O}$を中心とする半径$2$の円の内側に$\mathrm{OP}=1$となる点$\mathrm{P}$をとる.点$\mathrm{P}$で垂直に交わる$2$直線と円との交点を反時計回りの順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.

(1)$\mathrm{O}$と直線$\mathrm{AC}$との距離が$\displaystyle \frac{3}{5}$のとき,四角形$\mathrm{ABCD}$の面積は
\[ \frac{[ア][イ]}{[ウ][エ]} \sqrt{[オ][カ]} \]
である.
(2)$\mathrm{O}$と直線$\mathrm{AC}$との距離が$h$のとき,四角形$\mathrm{ABCD}$の面積を$S$とおくと,
\[ S^2=-[キ]h^4+[ク]h^2+[ケ][コ] \]
であり,$S$の最大値は$[サ]$,最小値は$[シ] \sqrt{[ス]}$である.
(3)三角形$\mathrm{ABP}$の面積を$S_1$,三角形$\mathrm{CDP}$の面積を$S_2$とおくと,
\[ S_1 \cdot S_2=\frac{[セ]}{[ソ]} \]
が成り立ち,$S_1+S_2$の最小値は$[タ]$であり,最大値は$[チ]$である.
日本女子大学 私立 日本女子大学 2012年 第3問
点$\mathrm{H}$を中心,線分$\mathrm{BC}$を直径とする円を底面とし,点$\mathrm{O}$を頂点とする円錐を考える.ただし,線分$\mathrm{OH}$は底面に対して垂直であるとする.右側の図は円錐の表面の展開図の底面以外の部分である.左側の図のように底面に平行な平面で円錐を切断する.この切断面の円と母線$\mathrm{OB}$との交点を$\mathrm{A}$,母線$\mathrm{OC}$との交点を$\mathrm{D}$,直線$\mathrm{OH}$との交点を$\mathrm{G}$とする.さらに,線分$\mathrm{AB}$上に点$\mathrm{E}$をとる.左側の図で線分の長さが$\mathrm{AD}=2$,$\mathrm{BC}=8$,$\mathrm{GH}=6 \sqrt{2}$,$\mathrm{AE}=3$のとき,以下の問いに答えよ.

(1)線分$\mathrm{AB}$の長さを求めよ.
(2)線分$\mathrm{OA}$の長さと,この展開図の扇形の中心角$\theta$の大きさを求めよ.
(3)円錐の表面上で,底面を横切らずに,点$\mathrm{B}$から母線$\mathrm{OC}$上の点を経て点$\mathrm{E}$に至る最短距離を,この展開図を利用して求めよ.
(4)母線$\mathrm{OC}$と$(3)$の最短距離を与える線の交点を$\mathrm{P}$とする.線分$\mathrm{CP}$の長さを求めよ.
(図は省略)
金沢工業大学 私立 金沢工業大学 2012年 第5問
座標平面上において直線$y=2x$を$\ell$とし,この直線$\ell$に関して対称な$2$点$\mathrm{P}(x,\ y)$,$\mathrm{Q}(u,\ v)$をとる.

(1)直線$\mathrm{PQ}$は直線$\ell$に垂直であるから
\[ v-y=\frac{[アイ]}{[ウ]} (u-x) \qquad \cdots\cdots① \]
が成り立つ.
(2)点$\mathrm{P}$と点$\mathrm{Q}$の中点は直線$\ell$上にあるから
\[ v+y=[エ](u+x) \qquad \cdots\cdots② \]
が成り立つ.
(3)等式$①$と$②$より,$x,\ y$と$u,\ v$の間に関係
\[ \left( \begin{array}{c}
u \\
v
\end{array} \right)=\frac{1}{[オ]} \left( \begin{array}{cc}
[カキ] & [ク] \\
[ケ] & [コ]
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right) \qquad \cdots\cdots③ \]
が成り立つ.
(4)$1$次変換$③$を表す行列を$A$とすると,
\[ A^2=\left( \begin{array}{cc}
[サ] & [シ] \\
[ス] & [セ]
\end{array} \right),\quad A^{-1}=\frac{1}{[ソ]} \left( \begin{array}{cc}
[タチ] & [ツ] \\
[テ] & [ト]
\end{array} \right) \]
である.
神奈川大学 私立 神奈川大学 2012年 第1問
次の空欄を適当に補え.

(1)方程式$8 \times 8^x+7 \times 4^x=2^x$の解は$x=[$(\mathrm{a])$}$である.
(2)$\mathrm{O}$を原点$(0,\ 0,\ 0)$とする.ベクトル$\overrightarrow{\mathrm{OP}}=(p,\ q,\ r)$が,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$を通る平面に垂直で,$|\overrightarrow{\mathrm{OP}}|=1$,$p>0$を満たしているとき,$\overrightarrow{\mathrm{OP}}=[$(\mathrm{b])$}$である.
(3)$a_1=8$,$\displaystyle a_{n+1}=\frac{5}{4}a_n-10 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$の一般項は$a_n=[$(\mathrm{c])$}$である.
(4)正八面体の各面に$1$から$8$の数字を$1$つずつ書いた八面体サイコロが$2$つある.この$2$つを同時に投げたとき,少なくとも$1$つは$1$の目が出る確率は$[$(\mathrm{d])$}$である.

(5)関数$\displaystyle y=\frac{\log x}{x}$は,$x=[$(\mathrm{e])$}$のとき最大値をとる.

(6)$a \neq 0$とする.方程式$x^3-(a+1)x+a=0$が$1$以外の解を重解としてもつとき,$a=[$(\mathrm{f])$}$であり,そのときの重解は$x=[$(\mathrm{g])$}$である.
成城大学 私立 成城大学 2012年 第3問
座標空間において,$2$点$\mathrm{A}(\sqrt{6},\ 2,\ -\sqrt{6})$,$\mathrm{B}(-\sqrt{2},\ 2 \sqrt{3},\ \sqrt{2})$がある.原点を$\mathrm{O}$とするとき,以下の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の両方に垂直である単位ベクトル$\overrightarrow{p}$をすべて求めよ.
(2)平面$z=1$と直線$\mathrm{OA}$および直線$\mathrm{OB}$との交点を,それぞれ$\mathrm{A}^\prime$,$\mathrm{B}^\prime$とする.このとき線分$\mathrm{A}^\prime \mathrm{B}^\prime$の長さを求めよ.
東北医科薬科大学 私立 東北医科薬科大学 2012年 第2問
$xy$平面に三角形$\mathrm{ABC}$があり,
\[ \angle \mathrm{ABC}=60^\circ,\quad \angle \mathrm{BAC}=105^\circ,\quad \mathrm{BC}=1+\sqrt{3} \]
であるという.このとき,次の問に答えなさい.

(1)$\mathrm{AB}=[アイ]+\sqrt{[ウ]}$,$\mathrm{AC}=\sqrt{[エ]}$である.

(2)三角形$\mathrm{ABC}$の面積は$\displaystyle \frac{\sqrt{[オ]}}{[カ]}$である.
(3)点$\mathrm{A}$を通り$xy$平面に垂直な直線上の点$\mathrm{D}$を$\mathrm{AD}=4$となるように$xy$平面の上方にとる.また,点$\mathrm{B}$を通り$xy$平面に垂直な直線上の点$\mathrm{E}$を$\mathrm{BE}=3$となるように$xy$平面の上方にとる.また,点$\mathrm{C}$を通り$xy$平面に垂直な直線上の点$\mathrm{F}$を$\angle \mathrm{DEF}=90^\circ$となるようにとる.このとき,$\mathrm{CF}=[キ]$で,三角形$\mathrm{DEF}$の面積を$S$とおくと$\displaystyle S^2=\frac{[クケ]}{[コ]}$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2012年 第2問
糸の長さ$L$,おもりの質量$m$の振り子の振れの角(水平面に垂直な直線と糸がなす角)の大きさを$\theta$とすると,$\theta$は時刻$t$の関数として
\[ mL \frac{d^2 \theta}{dt^2}=-mg \theta \cdots\cdots (*) \]
を満たす.ただし重力加速度$g$は一定とする.

(1)$\theta=a \cos (2 \pi \nu t+\delta)$(ただし$\nu,\ a,\ \delta$は定数で$\nu>0$,$a \neq 0$)が時刻$t=t_1$で極大値をとり,その後初めて極小値をとる時刻を$t=t_2$とするとき,$t_2-t_1=[$4$]$である.
(2)$(1)$の$\theta$が$(*)$を満たすとき,$\nu$を求めると$\nu=[$5$]$である.
(3)$(2)$の$\theta$に対して時刻$t$におけるこの振り子のエネルギー$E(t)$を
\[ E(t)=\frac{1}{2} mL^2 \left( \frac{d\theta}{dt} \right)^2+\frac{1}{2}mgL \theta^2 \]
で与えるものとする.このとき$\displaystyle \frac{dE(t)}{dt}=[$6$]$である.
千葉工業大学 私立 千葉工業大学 2012年 第1問
次の各問に答えよ.

(1)$\displaystyle \frac{3 \sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}=[ア]+\sqrt{[イウ]}$である.
(2)整式$x^3-4x^2+7x+1$を$x^2-3x+2$で割った余りは$[エ]x+[オ]$である.
(3)$\displaystyle 3^{2x} \leqq \frac{9}{{27}^x}$をみたす$x$の範囲は$\displaystyle x \leqq \frac{[カ]}{[キ]}$である.
(4)直線$2x+3y+5=0$と点$(-4,\ 1)$において垂直に交わる直線の方程式は$\displaystyle y=\frac{[ク]}{[ケ]}x+[コ]$である.
(5)円$x^2+y^2=9$と円$x^2+(y+a)^2=9$が共有点をもつような定数$a$の値の範囲は$[サシ] \leqq a \leqq [ス]$である.
(6)$\overrightarrow{a}=(k,\ -2k,\ 5)$が$\overrightarrow{b}=(1,\ -2,\ -2)$に垂直であるとき,$k=[セ]$であり,$|\overrightarrow{a}|=[ソ] \sqrt{[タ]}$である.
(7)$1$個のサイコロを振り,出た目を$4$で割った余りを$X$とする.$X=1$となる確率は$\displaystyle \frac{[チ]}{[ツ]}$であり,また,$X$の期待値は$\displaystyle \frac{[テ]}{[ト]}$である.
(8)関数$\displaystyle f(x)=\frac{1}{3}x^3-ax^2+3x+1$($a$は定数)が$x=3$で極値をとるとき,$a=[ナ]$であり,極大値は$\displaystyle \frac{[ニ]}{[ヌ]}$である.
スポンサーリンク

「垂直」とは・・・

 まだこのタグの説明は執筆されていません。