タグ「垂直」の検索結果

21ページ目:全311問中201問~210問を表示)
群馬大学 国立 群馬大学 2012年 第3問
点$\mathrm{O}$を原点とする座標平面上に点$\mathrm{A}(2,\ 0)$と点P$_0(-1,\ 0)$をとる.点$\mathrm{P}_0$を通り,ベクトル$\overrightarrow{d}=(3,\ \sqrt{3})$に平行な直線を$\ell$とする.$\ell$上の点の列
\[ \mathrm{P}_1,\ \mathrm{P}_2,\ \cdots,\ \mathrm{P}_n,\ \cdots \]
を$n=1,\ 2,\ \cdots$について,直線$\mathrm{OP}_n$と直線$\mathrm{AP}_{n-1}$とが垂直であるようにとる.また$t_n$を$\overrightarrow{\mathrm{OP}_n}=\overrightarrow{\mathrm{OP}_0}+t_n \overrightarrow{d}$を満たす実数とする.このとき以下の問いに答えよ.

(1)$t_1$の値を求めよ.
(2)数列$\{t_n\}$の漸化式を求めよ.
(3)点$\mathrm{P}_n$の$x$座標が$\displaystyle \frac{33}{67}$となるときの$n$の値を求めよ.
鳥取大学 国立 鳥取大学 2012年 第4問
点$\mathrm{A}(1,\ 2,\ 4)$を通り,ベクトル$\overrightarrow{n}=(-3,\ 1,\ 2)$に垂直な平面を$\alpha$とする.平面$\alpha$に関して同じ側に$2$点$\mathrm{P}(-2,\ 1,\ 7)$,$\mathrm{Q}(1,\ 3,\ 7)$がある.次の問いに答えよ.

(1)平面$\alpha$に関して点$\mathrm{P}$と対称な点$\mathrm{R}$の座標を求めよ.
(2)平面$\alpha$上の点で,$\mathrm{PS}+\mathrm{QS}$を最小にする点$\mathrm{S}$の座標とそのときの最小値を求めよ.
宮城教育大学 国立 宮城教育大学 2012年 第4問
座標空間内の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 2,\ 1)$,$\mathrm{B}(-1,\ 1,\ 2)$を含む平面を$\alpha$とする.また$t$を実数として,$\mathrm{P}(1,\ 0,\ -t)$とする.このとき次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角$\theta \ (0^\circ \leqq \theta \leqq 180^\circ)$を求めよ.
(2)点$\mathrm{P}$が平面$\alpha$上にあるとき,$t$の値を求めよ.
(3)点$\mathrm{P}$が平面$\alpha$上にないとき,点$\mathrm{P}$を通り平面$\alpha$に垂直な直線と平面$\alpha$との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$t$を用いて表せ.
長崎大学 国立 長崎大学 2012年 第1問
四面体$\mathrm{OABC}$において
\[ \mathrm{OA}=1, \mathrm{OB}=3, \mathrm{OC}=2, \angle \mathrm{AOB}=90^\circ, \angle \mathrm{AOC}=\angle \mathrm{BOC}=120^\circ \]
とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.次の問いに答えよ.

(1)平面$\mathrm{ABC}$上に点$\mathrm{H}$をとり,$s,\ t,\ u$を実数として$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$とおく.このとき,$s+t+u=1$となることを示せ.
(2)(1)の$\overrightarrow{\mathrm{OH}}$が平面$\mathrm{ABC}$に垂直であるとき,$s,\ t,\ u$の値をそれぞれ求めよ.
(3)平面$\mathrm{OAB}$上に点$\mathrm{K}$をとり,$\overrightarrow{\mathrm{CK}}$が平面$\mathrm{OAB}$に垂直であるとする.このとき,$\overrightarrow{\mathrm{OK}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表し,$\overrightarrow{\mathrm{CK}}$の大きさと四面体$\mathrm{OABC}$の体積を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2012年 第2問
$xyz$空間内に四面体$\mathrm{PABC}$がある.$\triangle \mathrm{ABC}$は$xy$平面内にある鋭角三角形とし,頂点$\mathrm{P}$の$z$座標は正とする.$\mathrm{P}$から$xy$平面に下ろした垂線を$\mathrm{PH}$とし,$\mathrm{H}$は$\triangle \mathrm{ABC}$の内部にあるとする.$\mathrm{H}$から直線$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$に下ろした垂線をそれぞれ$\mathrm{HK}_1$,$\mathrm{HK}_2$,$\mathrm{HK}_3$とする.そのとき$\mathrm{PK}_1 \perp \mathrm{AB}$,$\mathrm{PK}_2 \perp \mathrm{BC}$,$\mathrm{PK}_3 \perp \mathrm{CA}$である.$\angle \mathrm{PK}_1 \mathrm{H}=\alpha_1$,$\angle \mathrm{PK}_2 \mathrm{H}=\alpha_2$,$\angle \mathrm{PK}_3 \mathrm{H}=\alpha_3$とし,$\triangle \mathrm{PAB}$,$\triangle \mathrm{PBC}$,$\triangle \mathrm{PCA}$の面積をそれぞれ$S_1,\ S_2,\ S_3$とする.

(1)$\triangle \mathrm{HAB}$の面積を$\alpha_1,\ S_1$を用いて表せ.
(2)3つのベクトル$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$は,大きさがそれぞれ$S_1,\ S_2,\ S_3$であり,向きがそれぞれ平面$\mathrm{PAB}$,平面$\mathrm{PBC}$,平面$\mathrm{PCA}$に垂直であるとする.ただし,$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$の$z$成分はすべて正とする.このとき,$\overrightarrow{l_1}+\overrightarrow{l_2}+\overrightarrow{l_3}$の$z$成分は$\triangle \mathrm{ABC}$の面積に等しいことを示せ.
(3)3辺$\mathrm{AB},\ \mathrm{BC},\ \mathrm{CA}$の長さの比$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}$を,$\alpha_1,\ \alpha_2,\ \alpha_3,\ S_1,\ S_2,\ S_3$を用いて表せ.
滋賀医科大学 国立 滋賀医科大学 2012年 第1問
$xyz$空間内の$\overrightarrow{\mathrm{0}}$でないベクトル$\overrightarrow{p}=(x,\ y,\ z)$を考え,$\displaystyle \overrightarrow{p^\prime}=\frac{\overrightarrow{p}}{|\overrightarrow{p}|}$とおく.

(1)$\overrightarrow{p^\prime}$の大きさを求めよ.
(2)$\overrightarrow{p}$と$x$軸,$y$軸,$z$軸の正の向きとのなす角をそれぞれ$\alpha,\ \beta,\ \gamma$とおくとき,$\overrightarrow{p^\prime}=(\cos \alpha,\ \cos \beta,\ \cos \gamma)$を示せ.
(3)$\overrightarrow{p}=(3,\ 4,\ 12)$とする.頂点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(a_1,\ a_2,\ a_3)$,$\mathrm{B}(b_1,\ b_2,\ b_3)$の$\triangle \mathrm{OAB}$について,$\overrightarrow{a}=(a_1,\ a_2,\ a_3)$,$\overrightarrow{b}=(b_1,\ b_2,\ b_3)$はともに$\overrightarrow{p}$に垂直とする.$\triangle \mathrm{OAB}$の面積を$S$とおくとき,$xy$平面上の点$\mathrm{O}$,$\mathrm{A}^\prime(a_1,\ a_2,\ 0)$,$\mathrm{B}^\prime(b_1,\ b_2,\ 0)$が作る$\triangle \mathrm{OA}^\prime \mathrm{B}^\prime$の面積を$S$を用いて表せ.
山口大学 国立 山口大学 2012年 第1問
$xy$平面上に点$\mathrm{A}(-1,\ 0)$と,原点を中心とする半径1の円$C$を考える.$C$上の点$\mathrm{P}$を通り$x$軸に垂直な直線を$\ell$とし,$\ell$と$x$軸の交点を$\mathrm{Q}$とする.このとき,次の問いに答えなさい.

(1)$\mathrm{P}$の$x$座標を$a$とするとき,$f(a)=\mathrm{AQ}+\mathrm{PQ}$を$a$を用いて表しなさい.
(2)(1)で求めた関数$f(a)$の$-1 \leqq a \leqq 1$における最大値を求めなさい.
金沢大学 国立 金沢大学 2012年 第2問
直線$\ell:(x,\ y,\ z)=(5,\ 0,\ 0)+s(1,\ -1,\ 0)$上に点$\mathrm{P}_0$,直線$m:(x,\ y,\ z)=(0,\ 0,\ 2)+t(1,\ 0,\ 2)$上に点$\mathrm{Q}_0$があり,$\overrightarrow{\mathrm{P}_0 \mathrm{Q}_0}$はベクトル$(1,\ -1,\ 0)$と$(1,\ 0,\ 2)$の両方に垂直である.次の問いに答えよ.

(1)$\mathrm{P}_0,\ \mathrm{Q}_0$の座標を求めよ.
(2)$|\overrightarrow{\mathrm{P}_0 \mathrm{Q}_0}|$を求めよ.
(3)直線$\ell$上の点$\mathrm{P}$,直線$m$上の点$\mathrm{Q}$について,$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{\mathrm{PP_0}}$,$\overrightarrow{\mathrm{P_0Q_0}}$,$\overrightarrow{\mathrm{Q_0Q}}$で表せ.また,$|\overrightarrow{\mathrm{PQ}}|^2=|\overrightarrow{\mathrm{PP_0}}+\overrightarrow{\mathrm{Q_0Q}}|^2+16$であることを示せ.
愛媛大学 国立 愛媛大学 2012年 第4問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
愛媛大学 国立 愛媛大学 2012年 第1問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
スポンサーリンク

「垂直」とは・・・

 まだこのタグの説明は執筆されていません。